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The ever-changing data science landscape is fueling innovation in the built environment context by pro-
viding new and more effective means of converting large raw data sets into value for professionals in the
design, construction and operations of buildings. The literature developed due to this convergence has
rapidly increased in recent years, making it difficult for traditional review approaches to cover all related
papers. Therefore, this paper applies a natural language processing (NLP) method to provide an exhaus-
tive and quantitative review.Approximately 30,000 scientific publications were retrieved from the
Elsevier API to extract the relationship between data sources, data science techniques, and building
energy efficiency applications across the life cycle of buildings. The text-mining and NLP analysis reveals
that data sciences techniques are applied more for operation phase applications such as fault detection
and diagnosis (FDD), while being under-explored in design and commissioning phases. In addition, it
is pointed out that more data science techniques that are to be investigated for various applications.
For example, generative adversarial networks (GANs) has potential in facilitating parametric design;
transfer learning is a promising path to promoting the application of optimal building operation;

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

With advances in information technology, buildings today are
collecting ever-larger amount of real-time data from various
heterogeneous sources [14,83]. The vast amount of data also have
led to increased data awareness and data science applications [99].
These innovations have led to an explosion of research in this field,
resulting in thousands of publications in this area (e.g., Fig. 3). It is
now the case that researchers are in a position in which there are
significantly more research publications available than what can
be processed and digested by human [40]. Numerous literature
reviews are also being produced to aggregate research literature;
however, this is also not a trivial process due to the volume of
research in this area.
1.1. Using data science to quantify the impact of data science on
buildings

In order to address this challenge, the concept of using text-
mining methods to analyze scientific literature has gained traction.
The academic knowledge is exponentially expanding; thousands of
research articles are authored by domain experts every day [77].
Thanks to the recent advancements in Natural Language Processing
(NLP), it has been viable to extract knowledge from a large corpus
of such structured text. Typically, information from the literature is
extracted via traditional narrative literature review/survey of a
finite number of articles (hundreds) [94], besides other methods
such as questionnaire surveys and expert interviews. However,
there are some challenges in applying these methods on a large
scale [8]. Specifically, conducting a manual literature review on a
large number of papers requires huge effort. It is even more chal-
lenging if the literature review is cross-disciplinary such as extract-
ing relations between various data.
1.2. Similar studies

Several conventional literature reviews have been completed in
recent years to capture the innovation occurring due to the conver-
gence of data science and building energy performance research
during different lifecycle phases [49,109,60,21,48,132,69]. Wang
and Srinivasan explored the use of single versus ensemble-based
models for building energy prediction [153]. Roth et. al explored
the use of various data-driven techniques in the context of bench-
marking building [134]. Colm et. al. [51] investigated Machine
learning methods for maximizing measurement and verification
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(M&V) accuracy with an application on a real building. This appli-
cation concluded sufficient accuracy despite some limitations such
as poor data quality and insufficient metering. In the operation
phase, data science methods were found promising to tackle the
challenges in building system control [96]. Fault detection and
diagnosis (FDD) is another important application of improving
building energy performance, where data science methods are
commonly used [168]. Furthermore, energy audit and commission-
ing of buildings using data analytics has been investigated by Rohl-
off et. al. to minimize the performance testing hours and maximize
the value of the test results [132]. Beyond single buildings, data-
driven methods are also useful for demand response and smart
grid applications [50,112,47]. On the urban scale, energy efficiency
applications also have grasped the interest of researchers. For
example, many researchers investigated district heating and cool-
ing systems [88,128] and Urban Building Energy Modelling (UBEM)
[11,65,127]. Most of these reviews have indicated the potentials of
using big data (such as sensing data from IoT and urban building
energy modelling data) and machine learning.

These reviews cover the specific application of data science to
various facets of the building energy paradigm however, they are
constrained by the ability of human-driven analysis to make qual-
itative relationships between a relatively small number of papers.
Each review is only able to analyze between 100-120 publications.
An emerging field of analysis of scientific literature is seeking to
extract insights from quantities of publications in the tens of thou-
sands instead of only the hundreds. These studies have been com-
pleted in fields, such as the humanities [131], bio-medicine [143],
and frameworks have been built for more general text mining pur-
poses [147].In the building domain, some studies adopted biblio-
metric reviews of the global trends in different building-related
issues such as BIM [137,91], Green Buildings [167], Life-cycle
assessment [52], Building maintenance [130] among other aspects.

Different tools and approaches of text-mining have been used in
literature to conduct literature reviews. [23,41,138,158] used VOS-
viewer [149] to create bibliometric networks and density map
between articles in different fields. Other researchers used CiteNe-
tExplorer [150] to track the citation relations across articles in sci-
entific research [38,142] among others. Other tools such as
CiteSpaceII, BibExcel, SciMAT,Sci2 Tool have been extensively
reviewed by [110]. However, all these tools come with a graphical
user interface (GUI) which limits the user ability to extend it
beyond its embedded algorithms. Additionally, these tools only
use the articles’ metadata (title, abstract, authors, keywords, refer-
ences, date ..etc) not the article body full text. Therefore, many
researchers used open-sourced libraries such as the Natural Lan-
guage ToolKit NLTK [95], Glove [120], Python/scikit-learn [119],
word2Vec [102,100,103] to develop a model that performs a speci-
fic task.

This paper aims to address the challenges and deficiencies of
typical literature reviews and capture the full extent of the rela-
tionships between data science and building energy performance.
Given these circumstances, the current study adopts text mining
survey and natural language processing to extract different seg-
ments of building data usability and their relevant users. This effort
is the first text-mining and NLP review of its kind in the building
energy performance research domain.

The paper is organized as follows. Section 2 provides an outline
of the data extraction from the publisher’s API, the text mining pro-
cess, and the quantification of relationships between the different
concepts being compared. Section 3 illustrates the overview graph-
ics extracted from the mining process that show the diversity of
data science techniques applied to buildings. Section 4 provides a
high-level analysis of the trends and gaps found in the literature
with respect to data science for building performance analysis.
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Finally, Section 5 concludes the analysis and provides insight on
reproducibility and further analysis using the data set.
2. Methodology

The current study follows three types of research designs,
namely, text-mining survey, natural language processing (NLP)
semantic analysis, and relation graph extraction. Each one of these
three designs is distributed across a five-phase method of data col-
lection, preprocessing, and processing. These five phases, summa-
rized in Fig. 1, are: 1) Identifying the querying keywords of each
category, 2) Extracting the relevant articles with their correspond-
ing metadata using ELSEVIER api, 3) Pre-processing the data, 4)
Applying the NLP algorithms, 5) Extracting the relationships and
creating the relation graph network.

2.1. Keyword identification

Four distinct categories of keywords are identified that were
used for querying the articles for this analysis. Specifically, the cat-
egories are data, data science, energy efficiency, and
phase. These keywords are meant to constitute a relational net-
work to extract the use of different data-points, techniques, algo-
rithms, and applications during the building life cycle phase as
illustrated in Fig. 2. The analysis of the relationships between these
concepts forms the foundation to understand what techniques and
data sources are popular in the building energy performance
domain and which ones are underutilized.

2.1.1. Definitions
To set the context, the following are more detailed definitions of

each of these concept categories:

Def.1 Data: (data) refers to different types of data used in build-
ings, including design specifications’ data such as thermal
comfort and indoor environmental quality; metered data
such as temperature, humidity, energy consumption, and
chilled water flow rates; and spatial data such as building
geometry, spaces and zones.

Def.2 Data Science: (data_science) refers to models and algo-
rithms used by different users during different building
life-cycle phases. For example, the use of energy simulation,
data mining and visualization, machine learning models
would be included in this category.

Def.3 Energy Efficiency: (energy_efficiency) refers to the var-
ious categories of potential application of data science in the
building energy analysis domain. These techniques range
from conventional approaches such as automated fault
detection and diagnostics (AFDD) to more contemporary
innovations such as urban-scale district energy modelling.

Def.4 Phase: (phase) refers to the building life-cycle phase/stage.
We defined 5 phases found in the literature: design phase,
commissioning, operation and maintenance, and retrofit.

Each of these categories consists of manually defined initial
keywords. We obtained these keywords by conducting a prelimi-
nary survey over the existing literature.

2.1.2. Keywords acquisition
A preliminary literature survey was conducted to obtain the

keywords of each of the categories. For example, keywords that
are related to the data category include: meter readings,

energy consumption, load profile, thermal mass, elec-

tricity pricing, schedule, thermal comfort, etc.



Fig. 1. The flowchart shows the methodology used in this research 1) Identifying the querying keywords of each category, 2) Extracting the relevant articles with their
corresponding metadata using ELSEVIER api, 3) Pre-processing the data, 4) Applying the NLP algorithms, 5) Extracting the relationships and creating the relation graph
network.

Fig. 2. Overview of the categories of concepts analysed in this text-mining analysis and their relationships with each other.
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Each of the keywords has been paired with words to restrict the
search query to the built environment. These restrictive words are
‘‘building", built environment, and buildings. For exam-
ple, using the word ‘‘Haystack” which indicates a building schema
results in an irrelevant output such as ‘‘. . .Finding a needle in a
haystack”.
2.2. Text mining survey

ELSEVIER is one of the largest scientific publishing and aggrega-
tion organizations. They first introduced an API for the public for
text-mining research in 2014 [151]. By opening their database,
researchers can extract full texts and metadata from more than
11 million research items using ELSEVIER API. In this research,
the same approach was used to obtain full versions of about
30,000 papers by querying the keywords extracted from the previ-
ous step. The articles come alongside their corresponding meta-
data, such as date of publishing, authors and affiliation, journal
(container), title, abstract, keywords, amongst others. In this anal-
ysis, we use the publications extracted from this API as a represen-
tative sample from the building energy research domain as these
journals are the highest cited in energy and buildings.
2.2.1. Article filtering
The initial query process has resulted in 45,000 articles from

more than 1000 journals. However, many of these articles are
duplicated. Thus, after removing the duplicates, the accumulative
3

number of articles reached around 30,000 articles. All of these arti-
cles come with a rich amount of metadata including publishing
date, authors and their affiliations, keywords, number of citations,
besides abstract and title. Fig. 3 illustrates the top number of
papers per journal and the number of published papers per year.
From this result, it is observed that the majority of the articles
come from building, energy, and sensor-related journals. At this
stage, the extracted articles were ready for preprocessing and
preparation.
2.3. Text prepossessing

The preprocessing phase aims at preparing the extracted full
text for the data mining process. The data preparation includes
removing unwanted words from the articles, making the words
consistent, and tokenization of words or group of words. Firstly,
there are two types of unwanted words can be identified: 1) titles,
subtitles, and annotations such as introduction, literature

review, figure, table. These words are repeated in every article
and may cause bias in the subsequent processes. 2) stop words; the
term ‘‘stop-words” refers to words that are frequently repeated yet
not meaningful for the context such as the, a, in, of. If these
stop-words are included, they will cause bias in the NLP models.
Many tools are available for removing stop words such as the Nat-
ural Language Toolkit (NLTK) [95].

Secondly, Since the NLP models are case-sensitive, they need to
be consistent. For example, lowercasing letters throughout the cor-



Fig. 3. Number of collected papers per journal and per year.
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pus. Also, converting regular plural nouns into singular ones by
removing ”s”. There are many other sets of tools for making the
text consistent called text stemming and lemmatization. However,
the current study will only use two of these methods, which have
resulted in a better accuracy (Fig. 4). Firstly, the common root of
different words was used. Secondly, compound words were con-
verted into a single word with ‘‘_” separating them. The compound
words, however, were extracted from each article’s keyword sec-
tion. We included only the keywords section as it is known to con-
tain the main important acronyms and definitions. After making
the full text consistent, it is now ready to be prepared for the
NLP text mining process.
2.4. NLP text mining using Word2Vec

Word2Vec is a word embeddings algorithm that is used to
extract the semantic similarities between different words in a text
[100,101]. This similarity is indicated by assigning each word in the
text to a multi-dimensional vector. Then the Euclidean distance
between each word can be calculated using the cosine of the angle
between these vectors: sim A;Bð Þ ¼ cos hð Þ ¼ A:B

jjAjjjjBjj. The closer the

words to each other, the more similar they are likely to be. The
Word2Vec training process aims to predict a word (known as the
central word) from the context within which this word falls (con-
text words)[100,54]. This central word is initially masked, then the
algorithm tries to predict it from a window of n words before and
after (in our model, we used a window of 20 words). This window
was decided based on hyperparameters fine tuning. After reaching
a reasonable accuracy in predicting each word in the corpus, the
training stops. Then, the hidden layer is extracted as an embedding
vector. Deciding the dimension of the hidden layer (embedding
design, designs, de

mechanical engine

Fig. 4. Each word can have one or more similar synonyms which are mapped to the
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vector) is a best-practice-driven process and is subject to hyper-
parameter fine-tuning. In our case, we assigned a vector of 300
dimensions to each word which was proven to give the highest
accuracy for our model. The architecture of the word2vec model
is illustrated in Fig. 5.
2.5. Extracting the relationship between categories

In word2Vec, two words are similar if they frequently appear in
similar contexts. For example, if the word architect and the
word early_design_phase are frequently appearing among sim-
ilar words, then these two words will be assigned to relatively near
vectors. Concurrently, two, or more, words can be added or sub-
tracted from each other by adding/subtracting their corresponding
vectors. For example, adding artist + engineer results in a vec-
tor that is closest to the word architect. This metric is used to
extract the relationship between words from different categories
in two main steps.

Firstly, there can be many words that refer to the same term. In
this case, the words are mapped to that term. For example, the
word early_design_phase is found to have many other syn-
onyms that are similar to it such as: ‘‘early_design_stage’’,
conceptual_design, early_design_development, early_de-
sign, concept_design, early_design_stages, and others.
These words can differ slightly in using ‘‘_” rather than ‘‘–” or using
the word stage rather than phase. Another example is the use of
acronyms that refer to the same term such as gbrs and
green_building_rating_system were easily captured using
the word2vec similarity metric. Thus, the similarity metric is used
to extract these similar words which makes it easier to implement
the following step i.e. extracting the relationships.
signed, Design design

mechanical_engineerer

original word. The figure shows two types of text stemming and lemmatization.
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Extracting the relationships comes after creating a list of all the
words and their synonyms from each of the four categories. We
used a method called n-gram to extract these relationships [87].
The n-gram model searches for the similarity between two words
by sampling n samples from contiguous sequence of their syn-
onyms. For example, the objective is to extract the similarity
between the two wordsWa andWb such thatWa is "energy_con-
sumption" which has other synonyms such as Wa1 (‘‘build-
ing_energy_use") and Wa2 (‘‘energy_consumption_data");
and the word Wb ‘‘energy_benchmarking". The 1-gram model
will look for the the similarity by taking one word at time, while
the 2-gram model will look for the similarity by taking pairs of
words at time. At the end, the total similarity between the two
words is given by the average of all the similarities:

S Wa;Wbð Þ ¼

Xmax len Wað Þ;len Wbð Þð Þ

n¼1

n� gram Wa;Wbð Þ

max len Wað Þ; len Wbð Þð Þ
Where S Wa;Wbð Þ is the average similarity between two lists of
words Wa and Wb and their synonyms Wa ¼ wa1 . . .wan

� �
;

Wb ¼ wb1 . . .wbn

� �
. n is the is defined by the maximum number of

synonyms of the two words. If n ¼ 1, then it is called unigram; if
n ¼ 2, it is called digram; if n > 2 it is referred to as n-gram. The
n-gram is obtained by the cosine similarity between the two word
lists Wa and Wb as follows:

n� gram Wa;Wbð Þ ¼ Sim
Xn
i¼1

Wai ;
Xn
j¼1

Wbj

 !

An n-gram similarity is a number within the range �1:0;1:0½ �. If
the two words are identical (e.g. wa is the same as wb), their simi-
larity = 1.0, if they are perfectly semantically opposite, their simi-
larity will be �1:0 theoretically. However, 0.0 means that there is
no semantic similarity between the two words. These numbers

are converted into triplets Wa;Wb; S Wa;Wbð Þ
n o

which is then con-
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verted into a directed weighted graph. The results will be
explained in the following Section 3. For example, the n-gram sim-
ilarity between the word ‘‘fault detection and diagnosis"

which has the synonyms : [‘‘fault_detection_and_diagno-
sis", ‘‘fdd","fault_detection"] and the word ‘‘neu-

ral_network" which has the synonyms
[‘‘neural_networks", ‘‘deep_learning", ‘‘cnn"] will fol-
low 3-gram similarity which results in a value of 0.42 in this case
which is relatively high.

3. Results

The methodology outlined a process of using text-mining and
NLP methods to extract and process various concepts from a large
corpus of research publications related to the convergence of data
science and building performance. This section focuses on the
detailed visualization of the aspects of drawing relationships
between these categories. The key output of this work lies in the
ability to quantify in relative terms the strength of relationships
between the words found in the various categories being studied:
the data sources, energy efficiency applications and life cycle
phases of the built environment versus the data science techniques
available to researchers. Fig. 6 shows the framework of this process
starting with the definition of the categories and selection of words
to the visualization of similarity of words and clustering of words
into concepts.

3.1. Vector representation and relationships of extracted words

This first method of visualizing and drawing relationships
comes in the form of a scatter plot that illustrates the various
words extracted from the corpus and the directional nature and
magnitude of their differences according to the vector model.
Fig. 7 illustrates this situation by showing the embedding vector
of words projected into a two-dimensional space. The keywords
are categorized according to the four dimensions of the analysis:
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Fig. 6. Overview of the ways of showcasing the results of the text-mining and NLP process. 1) Identifying 4 categories and 2) assigning the corresponding words under each
category. After that, 3) the embedding vector of each word is extracted. Then, there are two main approaches: a) is the usability relation extraction (Section 3.2) including 4-a)
graph relation extraction using only the similarity metric, and 5-a) sorting the words based on its usability; and b) is the clustering of concepts (Section 3.3) including 4-b)
unsupervised hierarchical clustering of words based on the embedding vector of each word (from step 3) and then 5-b) the graph relations between categories based on the
clustered data.
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data, data science, energy efficiency and life-cycle phase. The var-
ious words are clustered according to their relationship with each
other in the vector model. The scatter plot shows how the words
most closely associated with various life cycle phases of buildings
can be extracted as a pattern of points from the lower left to the
upper right portion of the diagram.
3.2. Usability-based similarity relation extraction

The next method to visualize relationships was the comparison
of several word categories against each other to show the correla-
tions between various concepts. These visualizations are used to
illustrate the ranking of lowest to highest correlations of various
data and data science concepts in both the energy efficiency appli-
cations in buildings and when those techniques are generally
utilized.
3.2.1. Data sources used in building energy efficiency applications
The first comparison in this process was to show the relation-

ship between words referring to data sources with selected energy
efficiency applications. Fig. 8 shows a heat map of the various data
source words extracted from the literature and their relationship
strength with words extracted that related to energy efficiency
applications from the life-cycle phase of the building. The horizon-
tal axis (energy efficiency applications) is grouped according to the
life cycle phases of buildings and the vertical axis (data sources) is
sorted according to the average strength of relation for each data
source as compared to the applications.

It can be observed that data are used mainly during the opera-
tion and maintenance and the design phases of the building lifecy-
cle. However, data are underutilized in the commissioning phase.
On the one hand, there are some energy efficiency applications that
use data most frequently, such as passive design, demand-
controlled ventilation, model predictive controls (MPC), fault
detection and diagnosis, and retrofit analysis. On the other hand,
there are other energy efficiency applications that do not use data
frequently such as Measurement and verification (M&V), operation
and maintenance (O&M), HVAC optimization, parametric design,
and district energy systems.
6

Fig. 8 also shows that data sources also varies in their utiliza-
tion. Some of these data are frequently used such as energy con-
sumption data, building envelope, energy conservation measures
(ECM), occupant behaviour, cost analysis, and calibrated models.
Nonetheless, other data are underutilized related to HVAC design,
weather and thermal comfort such as inlet/outlet temperature,
condenser fan power, and mass flow rate; dew point, noise level,
mean radiant temperature, and dry-bulb temperature; and cloth-
ing insulation, thermal sensation, and thermal comfort indices.
3.2.2. Data science techniques that utilize the various data sources
from the built environment

The next comparison similarly uses the words related to data
sources, but instead compares them to various data science tech-
niques selected for this analysis. Fig. 9 outlines the relationship
between the various data science techniques versus the data
sources created in the built environment. This time both axes are
sorted according to the average strength of relation for both the
data science techniques (horizontal axis from right to left) and data
sources (vertical axis from top to bottom).

This relationship is dominated by energy simulation, optimiza-
tion, regression, and validation. However, the figure shows that
there is abundant room for further data use in generative Adversar-
ial Networks (GANs), dimensionality reduction, segmentation, and
anomaly detection. There is another pattern that can be observed
for applications such as factor analysis, reinforcement learning,
and multi-objective optimization. These data-science applications
are used frequently but with no significant relation to data sources.
These relations have various observations from the data-sources
perspective.

From the data source perspective, a different order from the
previous heatmap can be observed. While energy consumption
data is still dominating the use in data-science applications, histor-
ical data, real-time data, thermal comfort, and schedules are the
highest frequently used data sources for different data-science
applications. On the other side of the spectrum, HVAC design ele-
ments such as condenser fan power, inlet/outlet temperature,
CAV, and fan power; as well as passive design strategies such as
thermal mass are under-used in data science applications.



Fig. 7. The vector representation of the words from each category. These words are located based on their embedding vector. The embedding vector of each word is
dimensionally reduced from 300 dimensions to 2 dimensions for the sake of visualization. The euclidean distance between words indicates the semantic similarity between
these words. The degree of a specific node refers to the number of nodes connected to that specific node. The x and the y axis here represent the components of a 2D euclidean
space.
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3.3. Clustering of concepts

The next visualization method utilizes hierarchical clustering
instead of sorting the words from strongest to weakest relation.
Clustering allows for words with similarities within each category
to be grouped and observed. Hierarchical Agglomerative Clustering
(HAC) was used for this process using Ward’s method. This algo-
rithm is applied to the embedding vector of words in each category
to group similar words together based on the euclidean distance
between words in the vector space. This grouping is visualized in
the form of a tree called a dendrogram (Figs. 10 and 11).

3.3.1. Hierarchical agglomerative clustering of concepts
The HAC has been applied for words in each distinct category

using the Ward’s method [111]. On the one hand, Fig. 10 shows
the HAC of energy_efficiency category (on the left) and the HAC
of the data_science category (on the right). The energy_efficiency
category has been clustered into three groups. These groups are
likely to be grouped based on the life-cycle phase, namely, Opera-
tion and maintenance phase, design phase, and the commissioning
phase. However, the data_science category has been clustered into
five different groups/subgroups. These are, Machine Learning (ML),
Deep Learning (DL), Data pre/post-processing (PP), Optimization
(OP), and Statistical methods (St). On the other hand, Fig. 12 shows
7

the HAC of the data category. In this figure, the data category is
clustered into nine groups of keywords based on their similarities:

1. Passive systems (PS) which includes data that are used in pas-
sive design such as building geometry, orientation, glazing,
materials, shading devices, and natural ventilation.

2. Heat recovery ventilation data (HR) such as air-to-air, air-to-
water, and heat recovery.

3. Building Energy Modelling data (BEM) including heat/energy
balance, zones, surfaces, and heating/cooling loads.

4. Measurement and verification data (M&V) including energy
conservation measures (ECM), baseline model, ASHRAE guide-
line 14, calibrated simulation, and post-occupancy evaluation
(POE).

5. Energy consumption related data (EC). This includes the
energy price, cost saving, time of use, energy use intensity
(EUI), heat gains from appliances and equipment, load profile,
smart meters, and others.

6. HVAC related data including HVAC-AF airflow data and HVAC-T
temperature related data. HVAC airflow data include AHU, VAV,
CAV, fan speed and power, etc. However, HVAC temperature
related data include inlet/outlet temperature, set-point, chiller
water, and hot water.
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Fig. 8. The relation between data points and different energy-efficiency applications. The energy efficiency applications (shown on the Y-axis with red highlight) are
chronologically grouped based on the building life-cycle phases. The data-points (shown on the X-axis blue highlight) are sorted based on their appearance frequency. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The relation between data points (shown on the X-axis with blue highlight) and data-science algorithms (shown on the Y-axis with green highlight). Both of them are
sorted based on the sum of the similarity per each row/column. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 10. The hierarchical agglomerative clustering (HAC) of the energy_efficiency and data_science categories using Ward’s method.
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Fig. 11. The hierarchical agglomerative clustering (HAC) of the data keywords.
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7. Thermal comfort data (TC) including the clothing insulation,
thermal sensation, Predicted Mean Vote (PMV) and Percentage
of People Dissatisfied (PPD), and Mean Radiant Temperature
(MRT).

8. Design degree days (DD). including heating degree days, and
cooling degree days.

9. Weather data (WD) such as wind speed and direction, CO2,
dew point, temperature and relative humidity.From Fig. 12, it
can be observed that the weather data (WD has the highest
correlation with all the other data groups. This insight could
be attributed to the generic nature of weather data because it
is used as input for most of the applications that use the rest
of the groups except M&V. M&V on the other hand shows the
lowest correlation with all the other data groups (with an aver-
age of 0.21). This conclusion might pertain to the unique nature
of M&V that requires the evaluation of energy conservation
measures (ECM) on building performance (in the operation
phase) versus a baseline model (in the design phase). Such over-
lap between the operation and the design phases applications is
rare. For example, Thermal comfort applications are used
either in the design phase (i.e., Sizing, BEM, HVAC) or in the
operation phase (i.e.: operation controls, Post-occupancy evalu-
ation). Fig. 12 Also shows that Thermal Comfort (TC) and
Energy consumption (EC) constitute the median of the cate-
gories with average correlations 0.67 and 0.58 respectively.
These two categories falls in the area between the essential
inputs/output data of energy-efficiency applications (Group1)
10
and the fine-tuner data (Group2). Any energy efficiency applica-
tion is meant to balance between these two categories, i.e. to
trade-off between Thermal comfort and energy consumption.
Finally, Group 2 consists of categories of data that have high
potential in different energy efficiency and data science applica-
tions but are not fully matured.
3.3.2. Data use across other categories
The final visualization in this section focuses on converging the

three categories of data, energy_efficiency, and data_science with
the clustering techniques (Fig. 13). Data science applications such
as optimization (OP), machine learning (ML), statistical methods,
and sequential deep learning (SDL such as RNN and LSTM) have
relatively high relation with data. Those methods require a large
amount of data from various resources for more accurate results
[21]. However, it is can be seen that pre and post-processing meth-
ods (PP), Reinforcement Learning and transfer learning (RL), and
other emerging models such as GANs and XGBoost do not have a
strong relationship with many energy efficiency applications, espe-
cially those that do not change rapidly over the building lifecycle
such as passive systems and building energy modeling. These types
of data are usually generated during the early design phase of the
building. Fig. 15 also confirms this claim as it shows very few data-
science applications utilization during the design phase of the
building compared to other phases.



Fig. 12. The average correlation of the data keywords. The detailed breakdown of each individual keyword can be shown at https://doi.org/10.6084/m9.figshare.13989653.
v1.
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4. Discussion

The high level quantification of relationships between the data
sources, data science techniques and various applications in the
built environment provide the foundation for several key take-
aways. This section expands upon the analysis of the results to pro-
vide high-level insights that can be used to guide future research.
Each insight includes the discussion of a representative publication
that illustrates the momentum or gap for that particular point.

Fig. 14 shows a comparison of the various data science tech-
niques as compared to the energy efficiency applications for build-
ings as well as the life cycle phases. The following subsections
outline key takeaways for the research community to consider.

4.1. What are the most common data analysis techniques?

The top five data science-related techniques found in the left
side of Fig. 14 are intuitively those related to the traditional build-
ing energy domain techniques of simulation, optimization,
neural networks, reinforcement learning, and statisti-

cal analysis.
The literature for the application of energy simulation and opti-

mization for building energy efficiency applications is the most
11
voluminous due to the major efforts for decades of open-source
simulation projects like EnergyPlus [36] and optimization engines
such as BEopt [30], GenOpt [156], and jEplus [165]. More recently,
to ease the application of machine learning and statistical analysis
to building simulation, there has been development on interfacing
with open-source programming languages such as Python [139]
and R [75]. As illustrated in Figs. 14 and 15, building simulation,
also known as building performance simulation or building energy
modeling, plays a vital role throughout the building’s lifecycle
(passive and parametric design, M&V, FDD, LCA, energy audit,
and retrofit analysis). The evident developments in the discipline
of building performance simulation are supported by the rapid
growth of the International Building Performance Simulation Asso-
ciation (IBPSA) over the last two decades and research efforts
under the International Energy Agency’s Energy in Buildings and
Communities (IEA-EBC) program. To aid applications of building
performance simulation, a wide variety of tools have been devel-
oped with more than 200 software tools and programs listed on
the Building Energy Software Tools directory [71]. Crawley et al.
provides an overview into the capabilities of twenty major building
performance simulation programs [35]. Despite its long standing
history and developments, challenges remain leading to opportu-
nities in research and development. Hong, Langevin and Sun lists

https://doi.org/10.6084/m9.figshare.13989653.v1
https://doi.org/10.6084/m9.figshare.13989653.v1


Fig. 13. The heatmap on the top shows the average relations between each pair of elements from the data_science and the data categories. The heatmap on the bottom
shows the average relations between each pair of elements from the energy_efficiency and the data categories. A detailed version of the relations between every pair of
keywords can be viewed at [2]..
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the ten BPS challenges [67]. Table 1 lists each of these ten chal-
lenges. Additionally, we include the relevant publications and
existing open-source repositories and data-sources that form the
foundation in addressing these challenges.
4.2. What are the most explored building energy efficiency applications
for data science?

From the perspective of applications using data-driven meth-
ods, automated fault detection and diagnosis followed by
retrofit analysis , model predictive control, demand

response, and energy benchmarking emerges as the most
popular.
12
Fault detection and diagnosis (AFDD) is a field that has been
growing rapidly since the early 1990s as a means of finding and fix-
ing problems in building systems that result in energy waste and
inefficiency. Katipamula and Brambley found the field to be matur-
ing as early as 2006 [82]. Although matured, there have been
recent developments in AFDD as a result of advancements in Arti-
ficial Intelligence techniques [168] and anomaly detection
[121,122]. A challenge in the AFDD of building energy systems lies
in that it is a class-imbalanced classification problem (i.e., there are
few or no faulty training data). A Generative Adversarial Networks
(GANs) integrated AFDD framework that generates artificial faulty
samples in an adversarial way provides an innovative way to aug-
ment the training dataset, and have been shown to outperform tra-
ditional air handling unit [162] and chiller [161] AFDD methods.



Fig. 14. The figure on the left shows the relation between data-science algorithms and energy-efficiency applications sorted based on usability. On the right, the relation
between energy-efficiency applications and life-cycle phases are illustrated. The heatmaps’ axes are all sorted based on strength correlation except life-cycle phase which is in
a chronological order.
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However, amongst the data science techniques listed in Fig. 14,
GANs remain the least applied across various energy efficiency
applications investigated. This is not surprising since it is a rela-
tively new machine learning technique that might be beginning
to emerge. GANs has also been applied on thermal comfort for gen-
erating balanced dataset [123,124]. Additionally, GANs recently
have shown promising results in semi-real-time simulation of
urban solar radiation simulation as well as urban wind simulation
using Pix2Pix [32].

Retrofit analysis emerged as another top application
across most techniques due to the influence of studies showing
the large potential of upgrading the building stock [10]. As shown
in Fig. 14, retrofit analysis often involves the use of physics-based
simulation models, data collection and validation. The aim of retro-
fit analysis is to better understand the impacts of various factors on
the retrofit of an existing building. However, buildings are made up
of continuously changing sub-systems dynamically interacting
with one another [62]. Since during a retrofit analysis training data
of different scenarios is often not available, it is not surprising that
retrofit analysis typically involves physics-based modeling that
describes the complex dynamic interactions in buildings by a set
of mathematical equations. Data collection followed by model cal-
ibration is often carried out to ensure the model’s validity and thus
credibility for the subsequent retrofit analysis [63]. Since building
13
operation and characteristics may change over time, continuous
model calibration and data assimilation methodologies have also
been proposed to ensure the simulation model remains reasonably
representative of the actual physical building system [28,155].
pModel predictive control (MPC) has gained traction in the
last two decades through numerous case study-based implementa-
tions [5]. Data science techniques are essentially used to obtain the
predictive model and to solve the receding horizon control prob-
lem. Simulation (white-box), data-driven (black-box), and hybrid
(gray-box) are the three main categories of controller models [7].
Neural network models are becoming more popular due to their
stronger modeling capability [6]. In addition to model identifica-
tion, optimization techniques are also used to determine the opti-
mal control actions in the coming horizon. Typical algorithms
include gradient-free methods such as GA and PSO, and gradient-
based methods such as NLP and MILP [43]. Over the past few years,
reinforcement learning (RL) is becoming a major competitor of
MPC with its advantages of lower requirements on the predictive
model and better adaptability [166]. However, it also comes with
other problems such as higher data requirements and lower inter-
pretability. The comparison between these two categories of opti-
mal control approaches will be a major research topic in the future.
Another important topic for further exploration is to reduce the
implementation cost and promote the application of optimal con-



Fig. 15. The relationships between energy_efficiency applications and data science techniques: the HAC (on the right hand side) between energy efficiency (X-Axis) and
data science (Y-Axis). The heatmap on the left hand side is a summarized version of the relation map by taking the average of each cluster.
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trol. As a potential approach, transfer learning can be integrated
with both MPC [25] and RL [159].

Demand response (DR), or demand-side management, is to
reduce the energy cost by controlling the end-use customers’
energy consumption with respect to energy prices. With the
increasing penetration of renewable energy, the availability of
renewable sources is another important factor to consider [129].
While reducing or shifting the electricity load, buildings still need
to cater to the occupants’ necessary needs such as lighting, office
equipment, and environment conditioning. Thus, with no surprise,
optimization is the most critical data science technique used for
demand response [80]. Many other techniques are also involved
in the process of designing DR programs (grid side) and helping
the customers react to the programs (demand side). For example,
energy simulation is a useful tool to design and evaluate the DR
strategies [29]. Also, many clustering algorithms are applied to
extract the typical load profiles to better understand the end users,
estimate the participants’ potential, and help decide the scheduling
schemes [93]. Besides, at the city or grid level, the volume and vari-
ety of data generated when applying DR are both enormous. There-
fore, techniques of data collection and dimension reduction are
also essential in real implementation [76].
14
Building energy benchmarking is a concept which also
comes up in the top five applications of data science. This field
has grown based on the success of energy labeling schemes and
city-wide data disclosures. Recent work in this area focuses on
updating the modelling techniques [12] and even redefining the
way buildings are categorized for benchmarking [118,164]. The
large increase in open data sets available has created opportunities
to target specific strategies to cities based on their specific needs
[163] and using a combination physics-based and data-driven
methods [135]. Data-driven improvements have been suggested
related to generalizability [104] and interpretability [105].

4.3. What are the emerging application areas in which there are gaps?

On the other axis, it can be seen which energy efficiency tech-
niques have the lowest relation to the data science concepts, indi-
cating the gaps and opportunities for novelty. District energy

systems shows up as the weakest, likely due to the only recent
focus on the simulation and modelling of such techniques in the
domain. Johansson et al. [78,79] looked at district energy systems
and raised up some practical limitations such as the availability
and quality of sensors. Also, district energy prediction is dependent



Table 1
Challenges of building performance simulation, reviews or key publications on the topic, and corresponding open-source repositories and data-sources.

Challenge Relevant review(s) / publication(s) Code Open Data

1. Addressing the building performance gap Type and definition [39]; Causes [148];
Credibility gap [16]

ObepME [81]; WinProGen (Occupant-
behaviour gap) [20]

[72,108,20]

2. Modeling human-building interactions Occupant modeling methodology in BPS
[160] Challenges and opportunities
[116]

Buildings.Occupants [154] Occupant behavior [70]

3. Model calibration Calibration methods and techniques
[34,126,45]; Sensitivity analysis [146]

Bayesian calibration [27,125]; Opti-
mization [22]

OpenStudio Calibration examples
[113]

4. Modeling operation, controls and retrofits Retrofit toolkits [89,90]; Model based
commissioning [152]

Crowd-sourced ML for buildings [106] Large, open meter data [107]

5. Modeling operational faults Energy performance optimization [15] Openstudio Fault Models Gem [26] Open fault detection data [55]

6. Zero-net-energy and grid-responsive
buildings

Gaps and needs [13,86]; Grid-responsive
buildings [114]

BeOpt [31] NZEB occupant behaviour [85];
Watts per person[117]

7. Urban-scale building energy modeling Modeling methodology and workflows
[127]; Challenges and future opportu-
nities [66]

PyCity [140,144,1] City buildings dataset [24] SynCity
[135], NYC-UBEM [133]

8. Evaluating the energy-saving potential of
building technologies at national or
regional scales

E3 [98], Building stock energy prediction
[92]

INTERDYME [9], PortableDyme [57],
Scout [115]

Open data use for city-wide
benchmarking [134]

9. Modeling energy efficient technology
adoption

[44,73,53] N.A. Air-Conditioning Heating and
Refrigeration Institute (AHRI) open
data [61]

10. Integrated modeling and simulation Progress, prospects, and requirements
[33]

IFC[19], GBXML[42], OpenFOAM[74],
EnergyPlus[36],Co-simulation e.g.
obFMU[68]

Physics-based and data-driven
modelling for NYC [135]
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on both outdoor weather as well as control and social behaviour of
consumers [58].

HVAC optimization and om (operations and maintenance) are
contemporary topics, but only have small overlap with some of the
more recent innovative data science techniques emerging. On the
one hand, HVAC optimization has been reviewed by Selamat
et al. [141] in three areas: HVAC operational parameters optimiza-
tion, HVAC control system optimization, and building design
optimization. His survey concluded that predictive optimization
has more potential energy consumption reduction compared to
conventional methods. Not only on the HVAC system scale, but also
optimization should be done on the building design and building
thermal dynamics. Other implementations of the data science for
HVAC control in om have been conducted in recent years
[59,17,46]. These issues include user security regarding data col-
lection and storage, the lack of standardized data exchange
schemes, and the lack of personnel with proper data science and
domain knowledge.

Parametric design is also seen to be under-utilizing data
science applications although it has gained much momentum in
the last two decades [64]. This momentum is attributed to the
advancement in Computer-Aided design CAD software as well as
the emergence of user-friendly programming languages such as
visual programming languages (VPL) [56]. Visual programming
tools such as Revit Dynamo, and Rhino-Grasshopper has enabled
end-use programmers to use data science algorithms in the design
process. For example, Machine learning tools such as ANT [3]
Lunchbox and OWL [84]; Optimization and multi-objective opti-
mization such as OPOSSUM [157], octopus, Galapagos, and Opti-
mus [37]; Energy Modelling such as Ladybug tools, [136],
BuildFit [4]; Data visualization and deep learning using Gh_CPy-
thon [97]. These tools have grasped the attention of a large body
of researchers and end-use programmers recently and may have
a great potential for converging data science into the design
process.
15
5. Conclusion

This paper outlined the text mining analysis of approximately
30,000 publications found in the top journals in the built environ-
ment analytics domain. This process aims to review the data
science methods used in different building energy efficiency appli-
cations by mining large corpus of structured text from ELSEVIER
journals. This process discovered high-level trends and potential
gaps in the literature. Some data science methods have been exten-
sively used in energy efficiency applications such as optimization,
neural networks, statistical analysis, and energy simulation. How-
ever, there is still room for more opportunities of using other algo-
rithms such as anomaly detection, factor analysis, segmentation,
and GANs. Additionally, data-science methods are observed to be
under-utilized during the commissioning and design phases of
the building while saturated during the operation and mainte-
nance phase. This could be attributed to the availability of
ground-truth data during these lifecycle phases. Furthermore, dif-
ferent data sources are used frequently such as energy
consumption-related data and BEM-related data. While other data
sources are underutilized such as thermal-comfort related data, as
well as HVAC-optimization related data. These results are
extracted using a model based on the Word2Vec similarity metric.
The results from this metric have shown consistency with the pre-
vious studies. Thus, researchers in this domain should utilize these
results to determine which avenues are saturated, and therefore,
will require much more effort to differentiate their work, and those
which are emerging and have more unexplored potential.

Having said that, we acknowledge some limitations related to
this method. Firstly, each paper was treated equally over the text
mining procedure, neglecting the effect of those seminal studies.
Correspondingly, one future work is to introduce bibliometrics as
a feature to distinguish the paper’s significance. Also, this method
results in a non-directed relationship graph. This means that word
such as ‘‘occupant” can appear as a data (e.g. number of occupants)
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and can appear as a energy efficiency application (e.g. occupant
behaviour modelling). There are many words that can hold differ-
ent meanings such as ‘‘Operation and maintenance (O&M)” which
could be used as a lifecycle phase, and energy efficiency applica-
tions. Future directions include improving the model so that it
results in a directional graph (di-graph). This digraph can be drawn
out using relation extraction models based on part-of-speech and
stop-words. Besides, adding high-performance pre-trained models
that are based on transformers such as BERT [145] and Generative
Pre-trained Transformer 3 (GPT-3) [18] can be helpful to reduce
ambiguity from some words that has different meanings.

5.1. Reproducibility

This analysis can be reproduced using the code and word vector
data found on Github. https://github.com/ideas-lab-nus/data-
science-bldg-energy-efficiency.
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