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ABSTRACT
Building performance simulation has the potential to
quantitatively evaluate design alternatives and vari-
ous energy conservation measures for retrofit projects.
However before design strategies can be evaluated, ac-
curate modeling of existing conditions is crucial. This
paper extends current model calibration practice by
presenting a probabilistic method for estimating uncer-
tain parameters in HVAC systems for whole building
energy modeling. Using Markov Chain Monte Carlo
(MCMC) methods, probabilistic estimates of the pa-
rameters in two HVAC models were generated for use
in EnergyPlus. Demonstrated through a case study, the
proposed methodology provides predictions that more
accurately match observed data than base case mod-
els that are developed using default values, typical as-
sumptions and rules of thumb.

INTRODUCTION
A calibrated building energy model has the poten-
tial to guide building retrofit designs by provid-
ing a means to evaluate various energy conservation
measures. Current practice in model calibration is
supported by methods established within ASHRAE
Guideline 14 (ASHRAE, 2002) or the International
Performance Measurement and Verification Protocol
(IPMVP) (EVO, 2012). These calibration processes
often involve tuning model parameters until errors be-
tween model predictions and observations satisfy a
certain threshold with respect to whole building energy
consumption. One caveat is that the calibrated model
may not be representative of actual building perfor-
mance since various combinations of inputs can still
produce reasonable matching results. In particular,
HVAC systems are commonly neglected because of
the large number of input parameters required by ex-
isting simulation tools. In reality, information on these
parameters are often not available, and assumptions
are made using rules of thumb or predetermined de-
fault values. As a result, such models often come with
various uncertainties. These uncertainties are usually
ignored and do not translate to the calibrated model,
making its reliability questionable.
Uncertainty modeling in building performance simu-
lation is uncommon but is not new. Macdonald and
Strachan (2001) reviewed uncertainties in the thermo-
physical properties of construction materials, and in-
corporated them into the building simulation tool ESP-

r using Monte Carlo Analysis. Using regression based
methods, Sun et al. (2014) provided a framework to
quantify uncertainties in microclimate variables when
weather data is obtained from a nearby meteorologi-
cal station. Eisenhower et al. (2012) modeled 1009
parameters as uncertain in an EnergyPlus model by
varying them ±20% of their nominal value. Together
with sensitivity analysis, they provided insights to how
uncertainty in input parameters may affect model out-
puts. Using Bayesian calibration, Heo et al. (2012)
provided a methodology to determine the posterior
distributions of uncertain parameters in a normative
energy model given observed utility data.
This paper extends current approaches by applying
Bayesian calibration to HVAC systems. The HVAC
models considered are similar to those used in the En-
ergyPlus building energy simulation program but the
method can be extended to other deterministic HVAC
models. Using data from building management sys-
tems, the proposed method uses Markov Chain Monte
Carlo (MCMC) methods to provide probabilistic esti-
mates of the input parameters. It is demonstrated that
these estimates provide higher accuracy over using de-
fault values, typical assumptions and rules of thumb.
In addition, the proposed method provides the deci-
sion analyst with valuable information on the distribu-
tion of each parameter. Since the approach provides
probabilistic predictions instead of the usual point es-
timates with no measure of uncertainties, these pre-
dictions offer decision-makers greater assurance when
considering retrofit design alternatives.

METHOD
Bayesian calibration
A Bayesian approach was employed for the calibration
of HVAC models in energy simulation models. PyMC
(Patil et al., 2010), an open source Python package and
the Metropolis-Hastings algorithm, a specific MCMC
method was used for the calibration process. The pro-
cedure begins with the quantification of uncertainty
in model parameters using prior probability distribu-
tions. This is followed by an application of Bayes’s
Theorem to produce an updated posterior probability
distribution for each parameter through a process of
random-walks. This updating process is driven by the
log-likelihood of the model parameters given the ob-
servations (Equation 1). This likelihood function is
determined assuming Gaussian noise (ε ∼ N (0, σ2

ε ))
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with σε modeled as a random variable.

`(θ|y1, ..., yn) = log
n∏
i=1

N (yi; f(xi, θ), σ
2
ε ) (1)

Observations at each measured condition xi are de-
noted by yi; f(xi, θ) denotes the HVAC model’s out-
put computed at measured condition xi and calibration
parameters θ. θ can be a single or vector of parameters.
Overall, the proposed method can be summarized by
the following steps:
1. Define the prior probability distributions of the in-

put parameters.
2. Arbitrarily select a valid initial starting point θ0.
3. Suppose θ0, θ1, ..., θi have been generated. To

generate θi+1, first generate a candidate value
from the proposal distribution q. The candidate
value in this case refers to the input parameter(s)
to the deterministic HVAC model.

C ∼ q(c|θi) (2)

4. Perform computation of the deterministic HVAC
model output using the generated candidate value
as input.

5. Evaluate the likelihood of the computed output
given the measured data (Equation 1) and compute
r, the probability of transitioning to the new can-
didate value.

r = min

{
p(c)

p(θ)

q(θ|c)
q(c|θ)

, 1

}
(3)

6. Accept and set θi+1 to the new candidate value
with probability r or stay at the same point with
probability 1− r.

θi+1 =

{
C with probability r
θi with probability 1− r

(4)

7. Repeat steps (3) to (6) until convergence. The
Gelman-Rubin statistic (Gelman and Rubin, 1992)
was used to assess convergence. This diagnostic
method uses multiple chains to check for conver-
gence, and is based on the concept that if mul-
tiple chains have converged, there should be lit-
tle variability between and within the chains. A
Gelman-Rubin statistic below 1.2 was considered
as acceptable (Braak, 2006).

The generated sequence of values can then be used to
approximate the posterior distributions of the input pa-
rameters. Since the initial starting values might bias
the generated sequence, the first 10, 000 samples were
discarded.

Case study
The Bayesian calibration methodology is illustrated
with a case study. The building analyzed is an ac-
tual ten story office building located in Pennsylva-
nia, U.S.A. The HVAC system is a dual duct system

where both warm and cold air are separately ducted
and mixed at each terminal unit to achieve the de-
sired temperature. Cooling is supplied with a wa-
ter cooled chiller while heating is supplied through
gas boilers. Using measurements from the building
management system, we apply Bayesian calibration
to two EnergyPlus HVAC models (Boiler:HotWater
and Chiller:Electric:EIR). Details on each determin-
istic model can be found in the EnergyPlus source
code and Engineering Reference (UIUC and LBNL,
2014b).
Building data collection took place from May 1st 2013
to December 31st 2014. Separate sets of data were
used for the training and testing of each model. Data
from May 1st 2013 to April 30th 2014 was used for
training while a separate data set (May 1st 2014 to
December 31st 2014) was used for testing. Missing
and erroneous data were removed. Examples of er-
roneous data includes negative chiller or boiler effi-
ciency, boiler efficiency greater than 1 and negative
chiller or boiler power.

Boiler:HotWater
This EnergyPlus boiler model calculates the per-
formance of the boiler based on a nominal ther-
mal efficiency (UIUC and LBNL, 2014a). In ad-
dition, the model allows the inclusion of a cubic
curve (Equation 5) to provide a more accurate rep-
resentation of its efficiency. This curve models the
boiler’s efficiency as a function of its loading or
part-load ratio (PLR). The output of Equation 5
(BoilerEfficiencyCurveOutput) is multiplied by
the boiler’s nominal thermal efficiency to give the
boiler’s efficiency at different part load conditions.
Equation 6 is then used to determine the fuel used by
the boiler, after accounting for changes in its thermal
efficiency due to the load (UIUC and LBNL, 2014a).

Table 1
Parameters calibrated for boiler model.

Observations yi: Boiler energy consumption
Conditions xi: Boiler load

Parameters θ:

Nominal capacity
Nominal Thermal efficiency

Minimum Part load ratio
Coefficients of Equation 5

Two sets of measurements from the installed boiler are
required as inputs for the calibration of this Energy-
Plus Boiler:HotWater model. They are: (1) hourly en-
ergy consumption of the boiler as observations yi, and
(2) the corresponding boiler load xi. Table 1 sum-
marizes the input, output and parameters calibrated
by the Bayesian calibration procedure described in the
method above.
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BoilerEfficiencyCurveOutput = a0 + b0(PLR) + c0(PLR)2 + d0(PLR)3 (5)

FuelUsed =
BoilerLoad

(NominalThermalEfficiency)(BoilerEfficiencyCurveOutput)
(6)

CapFTemp = a1 + b1(Tcw,l) + c1(Tcw,l)
2 + d1(Tcond,e) + e1(Tcond,e)

2 + f1(Tcw,l)(Tcond,e) (7)

EIRFTemp = a2 + b2(Tcw,l) + c2(Tcw,l)
2 + d2(Tcond,e) + e2(Tcond,e)

2 + f2(Tcw,l)(Tcond,e) (8)

EIRFPLR = a3 + b3(PLR) + c3(PLR)2 (9)

Chiller:Electric:EIR
This EnergyPlus chiller model uses performance infor-
mation at reference conditions along with three perfor-
mance curves to determine the chiller’s performance
at off-reference conditions (UIUC and LBNL, 2014a).
The three performance curves are:
• Cooling Capacity Function of Temperature

Curve (CapFTemp) (Equation 7)
• Energy Input to Cooling Output Ratio Function

of Temperature Curve (EIRFTemp) (Equation 8)
• Energy Input to Cooling Output Ratio Function

of Part Load Ratio Curve (EIRFPLR) (Equation
9)

Equations 7 and 8 are biquadratic curves with two in-
dependent variables, namely the leaving chilled wa-
ter temperature (Tcw,l) and the entering condenser wa-
ter temperature (Tcond,e). The output of Equation 7
(CapFTemp) is multiplied by the reference capacity to
give the full-load cooling capacity at different operat-
ing conditions. The output of Equation 8 (EIRFTemp)
is multiplied by the reference EIR, where EIR is de-
fined as the inverse of the Coefficient of Performance
(COP). This gives the full-load EIR at different oper-
ating conditions. Equation 9 is a quadratic curve that
parameterizes the variation of chiller input power ratio
as a function of the part-load ratio (PLR) (UIUC and
LBNL, 2014a). The output of this curve (EIRFPLR)
is multiplied by the reference EIR and the EIRFTemp
(Equation 8) to give the EIR at specific temperatures
and part-load ratios. By way of explanation, this com-
putes the efficiency of the chiller at a specific temper-
ature and part-load ratio.
Two sets of measurements from the installed chiller
are required as inputs for the calibration of this En-
ergyPlus Chiller:Electric:EIR model. They are: (1)
hourly energy consumption of the chiller as obser-
vations yi, and (2) their corresponding conditions xi
which include the hourly averages of leaving chilled
water temperature, entering condenser water tempera-
ture and the chiller load. Table 2 summarizes the in-
puts, output and parameters that are calibrated. Maxi-
mum part load ratio is set to 1.0.

Table 2
Parameters calibrated for chiller model.

Observations yi: Chiller energy consumption

Conditions xi:
Leaving chilled water temperature
Entering condenser temperature

Chiller load

Parameters θ:

Reference capacity
Reference COP

Coefficients of Equation 7
Coefficients of Equation 8
Coefficients of Equation 9
Minimum part load ratio
Minimum unloading ratio

DISCUSSION AND RESULT ANALYSIS
Prior and posterior distributions
In Bayesian statistics, uncertain parameters are as-
signed prior probability distributions based on a de-
gree of belief. These could be derived from prior
knowledge such as experiments, existing databases,
expert knowledge, etc. Using MCMC, the theoreti-
cal posterior probability distribution of each calibra-
tion parameter is approximated and a histogram plot
generated to get a visual representation of its distribu-
tion.
To assess convergence, the Gelman-Rubin statistic
(Gelman and Rubin, 1992) was computed for ev-
ery calibration parameter (Tables 3 and 4). Table
3 lists the prior probabilities assigned to each cal-
ibration parameter for the Boiler:HotWater model.
Nominal capacity was assigned a normal N (µ, σ2)
prior with parameters µ = boiler plate capacity
and σ = 5% of the boiler plate capacity. Nomi-
nal thermal efficiency was assigned a normal prior
with parameters µ = boiler plate efficiency and
σ = 5% of the boiler plate efficiency. Minimum
PLR was assigned a uniform U(a, b) prior with
lower bound a = 0 and upper bound b = 1. The
bounds were selected to cover the valid range for PLR.
The coefficients of Equation 5 were assigned flat priors
(uniformly distributed from negative infinity to posi-
tive infinity) since no prior information was available.
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Figure 1 Posterior distribution of calibration parameters for Boiler:HotWater model.

This means that all possible values of these parameters
are equally likely a priori.
Figure 1 shows the posterior distributions of the cal-
ibration parameters for the Boiler:HotWater model.
From the histogram plots, the following can be ob-
served:
• Posterior distribution of the nominal thermal ef-

ficiency is between 0.8 and 1.
• Posterior distribution of the minimum PLR is to-

wards the lower bound (0 to 0.3) of the range
specified (0 to 1) which is logical.

• Figure 2 shows the mean value of the normal-
ized efficiency (NominalThermalEfficiency
× BoilerEfficiencyCurveOutput) for dif-
ferent values of PLR in the range of 0 to 1. The
bounds represent the variability in the boiler’s
efficiency computed from different sets of coef-
ficients (a0, a1, a2 and a3) and nominal thermal
efficiency. The plot (Figure 2) provides insights
to the boiler’s performance and can be useful in
monitoring the boiler’s performance at different
operating conditions.

• Model error (σε) is approximately normal with
parameters µ ≈ 60 kW and σ ≈ 5 kW.

Figure 2 Normalized thermal efficiency of boiler at
different part load conditions.

Table 4 lists the prior probabilities assigned to
each calibration parameter for the Chiller:Electric:EIR
model. Reference capacity was assigned a normal
prior with parameters µ = chiller plate capacity and
σ = 5% of the chiller plate capacity. Reference COP
was assigned a U(0, 10) prior. The bounds were se-
lected to cover the valid range for a Chiller’s typi-
cal COP. The coefficients of Equations 7, 8 and 9
were assigned a uniform prior probability distribution.
The lower and upper bounds were determined using
the data set (Chillers.idf) that comes with EnergyPlus.
The minimum and maximum values for each coeffi-
cient in the data set were translated into the lower and
upper bounds of each uniform prior by rounding down
the minimum values and rounding up the maximum
values respectively. Both the minimum PLR and min-
imum unloading ratio were assigned a U(0, 1) prior.
The bounds were selected to cover the valid range of
both calibration parameters. It should be noted that no
prior and Gelman-Rubin statistic were presented for
coefficients a1, a2 and a3 (Table 4). This is because
these parameters are computed as a constraint where
the curves (Equations 7, 8 and 9) output a value of 1.0
at reference temperatures (UIUC and LBNL, 2014b).
Figure 3 shows the posterior distribution of the cali-
bration parameters for the Chiller:Electric:EIR model.
From the histogram plots, the following can be ob-
served:
• At reference conditions, the posterior distribu-

tion of the chiller’s capacity is approximately
normal with parameters µ ≈ 3100 kW and σ ≈
160 kW.

• At reference conditions, the chiller has a COP of
between 3 and 8.5 with mean of approximately
4.

• Model error (σε) is approximately normal with
parameters µ ≈ 15 kW and σ ≈ 1 kW.
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Table 3
Prior probabilities and Gelman-Rubin Statistic of calibration parameters for Boiler:HotWater model.

Parameter Prior Posterior Summary Statistics
(mean,median,min,max) Gelman-Rubin Statistic

Nominal Capacity N (1519, 762) (1495,1495,1118,1803) 0.99990
Nominal Thermal Efficiency N (0.912, 0.04562) (0.912,0.911,0.830,1.000) 1.00011

Minimum PLR U(0, 1) (0.105,0.096,0.000,0.300) 0.99997
a0 U(−∞,∞) (0.749,0.750,0.351,0.987) 0.99999
b0 U(−∞,∞) (0.808,0.815,0.000,2.489) 0.99999
c0 U(−∞,∞) (-1.138,-1.121,-3.498,0.343) 1.00004
d0 U(−∞,∞) (0.556,0.540,-0.241,1.838) 1.00011
σε U(0, 200) (60.957,60.718,46.038,87.578) 0.99998

Table 4
Prior probabilities and Gelman-Rubin Statistic of calibration parameters for Chiller:Electric:EIR model.

Parameter Prior Posterior Summary Statistics
(mean,median,min,max) Gelman-Rubin Statistic

Reference Capacity N (3165, 1582) (3141,3141,2581,3703) 1.00004
Reference COP U(0, 10) (4.354,4.254,3.097,8.492) 1.14125

a1 - (1.030,1.036,0.000,2.000) -
b1 U(−1, 1) (-0.025,-0.045,-0.999,1.000) 1.07159
c1 U(−0.1, 0.1) (0.060,0.063,-0.011,0.100) 1.09317
d1 U(−1, 1) (0.204,0.214,-0.447,0.915) 1.00109
e1 U(−0.1, 0.1) (-0.004,-0.004,-0.022,0.0210) 1.00111
f1 U(−0.1, 0.1) (-0.028,-0.028,-0.094,0.021) 1.07570
a2 - (1.272,1.375,0.004,2.000) -
b2 U(−1, 1) (0.009,-0.003,-0.224,0.346) 1.06167
c2 U(−0.1, 0.1) (0.000,-0.000,-0.004,0.013) 1.03556
d2 U(−1, 1) (-0.017,-0.020,-0.166,0.156) 1.00448
e2 U(−0.1, 0.1) (-0.0004,-0.0004,-0.004,0.005) 1.00012
f2 U(−0.1, 0.1) (-0.0007,0.000,-0.012,0.007) 1.12804
a3 - (0.005,0.004,0.000,0.035) -
b3 U(−5, 5) (0.741,0.709,0.414,1.822) 1.11106
c3 U(−5, 5) (0.254,0.286,-0.823,0.581) 1.11659

Minimum PLR U(0, 1) (0.003,0.003,0.000,0.026) 1.01753
Minimum Unloading Ratio U(0, 1) (0.006,0.005,0.000,0.052) 1.06040

σε U(0, 200) (14.610,14.545,10.762,19.422) 1.00468
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Figure 3 Posterior distribution of calibration parameters for Chiller:Electric:EIR model.

Model validation

This calibration procedure not only provides insights
from observations, but also gives a better estimation of
the calibration parameters by changing their prior dis-
tributions based on their likelihood given the observed
data. As a result, the resulting posterior distribution
of each calibration parameter helps to establish a bet-
ter understanding of each parameter and improves the
predictive power of the energy model. To validate the
model, a separate dataset (May 1st 2014 to December
31st 2014) was used for testing. We compared the pre-
dictions with the observed values at an hourly resolu-
tion. Periods of time with missing data were removed
for validation purposes.

Figure 4 shows how predictions from the calibrated
Boiler:HotWater model compares with a base case
model that was built upon parameters derived from
conventional methods in building energy modeling.
This base case model is derived by setting the boiler’s
nominal capacity (1519 kW) and thermal efficiency
(0.826) as specified by the boiler plate. Minimum PLR
is set to 0 (default value in EnergyPlus). For the base
case model, the coefficients in Equation 5 were de-
termined using least squares regression. From Fig-
ure 4, it can be observed that the calibrated model
matches the hourly actual energy consumption more
accurately as compared to conventional modeling pro-

cedures (base case model). A similar observation can
be made in Figure 5, which illustrates the comparison
of predictions from the calibrated Chiller:Electric:EIR
model with the base case model. The chiller base
case model is derived by setting the chiller’s nominal
capacity (3165 kW) as specified by the chiller plate.
All other parameters were set to default values for a
generic centrifugal chiller provided by DOE-2.1E, and
can be found in the chiller data set (chillers.idf) that
comes with EnergyPlus. Unlike the Boiler:HotWater
model, least square regression is not used for deter-
mining the coefficients of the performance curves due
to the lack of data at full load conditions.

Comparing Figures 4 and 5, there is greater uncer-
tainty around the chiller model than the boiler model.
This could be due to the greater dispersion in mea-
sured chiller energy use as indicated by a larger coef-
ficient of variation (cv = ratio of standard deviation σ
to the mean µ) of 0.74 as compared to boiler energy
use (cv = 0.33). It is also interesting to observe large
uncertainties in predictions made by the chiller model
for short periods of time during June and July (Fig-
ure 5). This is because the operating conditions during
these periods fall outside the range used to train the
model. A closer look at these operating conditions re-
veal the entering condenser temperature (Tcond,e) to
exceed those found in the training data. Using Equa-
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tions 7 and 8 during these periods would therefore lead
to unsupported model extrapolations since the training
data cannot support inferences for these Tcond,e. In
this model, values of Tcond,e greater than the max-
imum allowable will be replaced by the maximum.
This results in predictions that are close to 0 kWh and
the larger uncertainties observed in Figure 5.
To quantify the improvements in accuracy, we com-
pared the coefficient of variation of the root mean
square error (CVRMSE). Equation 10 shows the for-
mulation of the CVRMSE (ASHRAE, 2002).

CV RMSE = 100×
√∑n

i=1 (yi − ŷi)2 / (n− 1)

ȳ
(10)

where yi = observed value at hour i; ŷi = predicted
value at hour i; ȳ = mean energy consumption of n
observations; and n = number data points.

Table 5
CVRMSE for calibrated and base case models.

HVAC model Type of model CVRMSE

Boiler:HotWater Calibrated model 12.9%
Base case model 28.4%

Chiller:Electric:EIR Calibrated model 23.5%
Base case model 40.1%

Table 5 shows the CVRMSE of the calibrated and the
base case models. Since the calibration process pro-
vides probabilistic estimates, the mean value of the es-
timates was used in the calculation of its CVRMSE.
The CVRMSE of the calibrated models are signifi-
cantly lower than that of the base case models (Table
5). Furthermore, models calibrated using the proposed
Bayesian approach outweigh deterministic models that
provide point estimates with no measure of uncer-
tainty. The provision of probabilistic predictions also
offer greater assurance to decision makers.

Figure 4 Comparison of measured boiler gas consumption against expected values from calibrated probabilistic
model (top plot) and base case model (bottom plot).

Figure 5 Comparison of measured chiller energy consumption against expected values from calibrated
probabilistic model (top plot) and base case model (bottom plot).

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 2794 -



CONCLUSION
This paper has shown how HVAC models in build-
ing energy simulation tools can be calibrated using a
Bayesian approach. Using the proposed method, prob-
abilistic estimates of model parameters were generated
based on their likelihood given the measured data. The
resultant posterior probability distribution not only
provides a better understanding of the model param-
eters but also improves the predictive power of the
building energy model. Using two HVAC component
models, the case study demonstrates that this method
provides predictions that more accurately match ob-
served data. The CVRMSE of the calibrated models
and the baseline models (built upon parameters de-
rived from default values and conventional methods in
building energy modeling) differ by about 50%. Fur-
thermore, by providing probabilistic predictions in-
stead of the usual point estimates with no measure of
uncertainties, decision makers can be provided with
more assurance when evaluating alternative designs or
operations.
To improve the applicability of the proposed method-
ology in practice, future work includes:

• More case studies to affirm the findings pre-
sented in this study. This includes the extension
of the current method to other building systems
and envelope parameters.

• The proposed calibration method may not be
computationally efficient in large scale applica-
tions where a large number of parameters needs
to be calibrated at the same time. Hence, it is im-
portant that a simplified, computationally effi-
cient algorithm in Bayesian calibration be devel-
oped for applications in building energy models.

• The use of a Bayesian approach for calibra-
tion requires the construction of appropriate
prior probability distributions and a retrospec-
tive evaluation of the model’s fitness. Knowl-
edge of the underlying problem and subjec-
tive judgement are therefore required to spec-
ify both the likelihood and prior parts of the
model. Hence, the development of a database
consisting of examples and probability specifi-
cations would help provide guidelines on these
issues and help alleviate inconsistencies and the
need to correct modeling specifications retro-
spectively.
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