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ABSTRACT
In this paper, we present a comparative study of five meth-
ods for the estimation of missing values in building sen-
sor data. The methods that were implemented and evalu-
ated include linear regression, weighted K-nearest neigh-
bors (kNN), support vector machines (SVM), mean im-
putation and replacing missing entries with zero. Using
data collected from an actual office building, the methods
were evaluated using varying parameter settings. Correla-
tion based feature selection is used to evaluate how using
different subsets of attributes may affect each method’s
performance. We also evaluate the effect of including
lagged variables as predictors. To test the robustness of
each method, the amount of missing values were varied
between 5% and 20%.

INTRODUCTION
Installation of sensors in buildings are becoming increas-
ingly common, collecting large amounts of information
that can be used for controls and retrofit analysis. Sig-
nificant discrepancies between simulated and actual mea-
sured consumption of buildings has also brought about
a movement to uncover these discrepancies by analyzing
data collected through extensive sensor networks. Build-
ing data has been used for a variety of building energy
model calibration techniques such as Bayesian calibra-
tion (Chong and Lam 2015; Heo, Choudhary, and Au-
genbroe 2012) and systematic evidence-based approaches
(Raftery, Keane, and ODonnell 2011). Since the calibra-
tion of building energy models usually require time-series
data, the estimation of missing values forms an impor-
tant preprocessing step. Building sensor data is also com-
monly used in various statistical and data mining tech-
niques to predict a building’s energy consumption (Dong,
Cao, and Lee 2005; Zhao and Magoulès 2012). How-
ever, most statistical and data mining methods cannot be
applied to data with missing values, further emphasizing
the importance of missing value estimation. The data col-
lected from buildings are usually in the form of matrices
consisting of successive measurements (rows) made over
a time interval for different variables/sensors (columns).

Unfortunately, the data collected often contains missing
values which can occur for diverse reasons, including
power outages at the sensors, malfunctioning of sensors,
or network issues. Three approaches are commonly used
to deal with missing values in building sensor data. The
first approach is complete case analysis, deleting all in-
stances for which the outcome or any of the inputs are
missing. Two issues may arise with this approach (Gel-
man and Hill 2006):

• If the missing values differ systematically from the
completely observed cases, complete-case analysis
that ignores missing values would be biased

• If there are many variables, there may be very few
complete cases, such that most of the data would be
deleted resulting in a very small dataset.

The second approach is mean imputation, where miss-
ing values are replaced with the mean value of the vari-
able. However, this approach distorts the distribution of
the variable, leading to complications in summary statis-
tics including, the underestimation of the variable’s stan-
dard deviation (Gelman and Hill 2006). Mean imputation
also distort relationships between variables by reducing
estimates of correlation towards zero. The third approach
is replacing missing entries with zero. This approach also
distorts the variable’s distribution and can result in large
errors when actual values are far from zero.
Although much work has been devoted to the imputation
of missing values in other fields, there is no published
literature concerning the treatment of missing values in
building related data. An overview of different techniques
for filling up missing values were investigated in the con-
text of non-response in sample surveys, attrition in longi-
tudinal studies and missing data in designed experiments
(Little and Rubin 2014). Common imputation-based ap-
proaches in survey practice include mean imputation and
linear regression (Little and Rubin 2014). Linear regres-
sion and weighted k-nearest neighbors has also been eval-
uated in the estimation of missing values in DNA mi-
croarrays (Troyanskaya et al. 2001; Kim, Golub, and Park
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2005). In this paper, we compare and evaluate five algo-
rithms (linear regression, weighted kNN, SVM, mean im-
putation and replacing with zero) for estimating missing
values in building data.

METHOD

The data used for this study is time-series data collected
from the 9th floor of Toshiba smart community center (of-
fice space) in Kawasaki, Japan (Figure 1). Using the data
collected, the performance of each algorithm was evalu-
ated at various percentages (5%, 10%, 15% and 20%) of
missing values. Data collection took place between July
24, 2015 and September 24, 2015 at 1 minute intervals.
The data collected were averaged to obtain hourly values.

Figure 1: Toshiba smart community center
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Figure 2: Floor plan of 9th floor of building

Sensor network
The sensor network deployed on the 9th floor of the build-
ing can be divided into 9 zones (Figure 2). Each zone (N,
NE, S, SW, W, NW, N and IS) aside from the core is in-
stalled with sensors that measures zone temperature, light-
ing, plug and process loads and separate measurements
for network related equipment such as routers.
Ventilation is supplied to the N, NE, S, SW, W, NW and
N zones by individual variable air volume (VAV) air han-
dling units (AHU). Ventilation to the IS zone is jointly
supplied by the AHUs that supplies outdoor air to the N,
S and W zones. Table 1 lists the sensors installed in each
AHU. Altogether, data from 92 sensors were collected and
used for this study.

Table 1: Sensors installed in air handling unit
Description Unit
Chilled water supply temperature ◦C
Chilled water return temperature ◦C
Hot water supply temperature ◦C
Hot water return temperature ◦C
AHU leaving cooling coil air temperature ◦C
AHU supply air temperature ◦C
Supply fan flow rate m3/h
Exhaust fan flow rate m3/h
AHU fan power W

Table 2: Estimating missing values using non-missing val-
ues as predictors

Timestamp Var 1 Var 2 Var 3 Var 4
1/1/2014 0:00 ? 0.42 440 455
1/1/2014 1:00 ? ? 440 521
1/1/2014 2:00 1.64 0.57 ? ?
1/1/2014 3:00 0.97 ? 436 451
1/1/2014 4:00 ? ? 438 ?

Estimation process
Instances (rows) containing missing values were removed
to yield ‘complete’ data sets. The ‘complete’ data set was
separated into two sets: one containing 60 percent of the
data for model training, and the other 40 percent of the
data for model testing. 5% to 20% of data were deleted
at random from the test data sets. Each of the five al-
gorithms were used to estimate missing values by using
non-missing values as predictors (Table 2). For example,
in Table 2, for the first instance (row), variables 2, 3 and
4 will be used to estimate variable 1. Similarly, for the
second instance, variables 3 and 4 will be used to estimate
variables 1 and 2 respectively. Since the goal here is not
causal inference but simply accurate prediction, it is ac-
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ceptable to use any inputs as predictors to the algorithm
to achieve this goal (Gelman and Hill 2006).

Lagged variables and feature selection
Since observations at time t are likely to be correlated with
observations at times t−1, t−2 and so forth, lagged vari-
ables were created and included as predictors to capture
the relationship between past and current values. Lags
up to 3 timestep into the past were evaluated. For ex-
ample, in Table 2, each time step would have 8 variables
instead of the current 4 if lagged variables (Var 1t−1, Var
2t−1, Var 3t−1 and Var 4t−1) at time t − 1 hour were in-
cluded. To test the effect of including lagged variables,
each algorithm’s performance on the following datasets
were compared: data with no lagged variables, data in-
cluding lagged variables of 1 time step (t−1), data includ-
ing consecutive lagged variables up to 2 time steps (t−1
and t−2) and data including consecutive lagged variables
up to 3 time steps (t−1, t−2 and t−3).
Feature selection also known as variable selection is the
process of selecting a subset of relevant features for use as
predictors. As part of this study, feature selection was car-
ried out to determine how different subsets of predictors
may affect each algorithm’s accuracy. This was carried
out by selecting k attributes that has the highest correla-
tion with the target variable. We test the performance of
each algorithm using different subsets (21, 22, 23, 24, 25,
26 and 27) of attributes for the prediction. For example,
when working with a subset containing 23 attributes, we
select 8 predictors that has the highest correlation with the
output variable. These 8 predictors are then used as pre-
dictors for model construction.
The metric used to evaluate accuracy of estimation is the
normalized Root Mean Squared difference (NRMSD) be-
tween the predicted and actual values (Equation 1) and
average NRMSD which is the mean NRMSD across all
variables (Equation 2). n denotes the number of missing
entries in a variable; y and ŷ denotes the true and pre-
dicted value respectively; m denotes the total number of
variables in the data set.

NRMSD =

√
∑

n
i=1(ŷi− y)2/n

ymax− ymin
(1)

Average NRMSD =
∑

m
i=1 NRMSDi

m
(2)

Linear regression
Linear regression is a commonly used method where the
scalar output (dependent variable) is a linear function of
the predictors/independent variables (Equation 3). Using
ordinary least squares, this method estimates the unknown
parameter β by minimizing the sum of squared differences
between predicted and actual values.

yi = xT
i β+ εi (3)

yi denotes the actual values for observation i; xi denotes
the value of the predictors for observation i; and εi denotes
the prediction error for observation i.

Weighted k-Nearest Neighbors (kNN)
The nearest neighbor algorithm (Cover and Hart 1967) is a
nonparametric method that assigns a value to the observa-
tion based on the values of the set of points nearest to it. In
the kNN algorithm, k nearest points are selected and used
for the prediction, and the influence is the same for each of
these neighbors (Hechenbichler and Schliep 2004). The
nearest neighbors are determined using the Euclidean dis-
tance. Since the nearest neighbors are selected using a
distance function, the scale of each variable can influence
the estimation. As a result, variables on a larger scale will
dominate the distance calculation. This is especially in
building data where different variables can have signifi-
cantly different scale. To overcome this, the data is nor-
malize to the same interval [0,1] by subtracting the mini-
mum value and dividing by its range (zi =

xi−min(x)
max(x)−min(x) ).

In the weighted kNN algorithm, the distances used to se-
lect the nearest neighbors are transformed into similar-
ity measures, which are used as weights (Hechenbichler
and Schliep 2004). Hence, closer neighbors have higher
weights and greater influence on the prediction. We ex-
amine the effect of different values of the parameter k on
estimation accuracy.

Support vector machines (SVM) for regression
The algorithm used is ε-support vector regression (ε-
SVR) with radial basis function (RBF) kernel (Chang
and Lin 2011). Consider a set of data points,
{(x1,z1), ...,(xl ,zl)}, where xi ∈ Rn is a feature vector and
zi ∈ R1 is the target output. Under given parameters C > 0
and ε > 0, ε-SVR can be defined by

min
ω,b,ξ,ξ∗

1
2

ω
T

ω+C
l

∑
i=1

ξi +C
l

∑
i=1

ξ
∗
i

subject to
ω

T
φ(xi)+b− zi ≤ ε+ξi (4)

zi−ω
T

φ(xi)−b≤ ε+ξ
∗
i

ξi,ξ
∗
i ≤ 0, i = 1, ..., l

We examine the effect of different values of SVM hyper-
parameters epsilon ε and cost C on estimation accuracy.
The value of ε in the ε-insensitive loss function affects
the number of support vectors used to construct the re-
gression function. An increase in ε decreases the number
of support vectors that are selected. C is the regularization
parameter that determines the tradeoff between maximiza-
tion of margin and minimization of errors of the SVM on
the training data. Hence both ε and C affects model com-
plexity.
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Figure 3: Effect of number of features and including lagged variables with linear regression. Different plots correspond
to data sets with different percent of missing entries. Different curves within each plot corresponds to data sets with
different number of lagged variables.

DISCUSSION AND RESULT ANALYSIS
Performance of using each algorithm to estimate missing
values was assessed over different data sets (both percent-
age of missing entries and number of periods of lagged
variables) and over different number of features/attributes.
Note that when no lagged variables are included, there
are only 91 attributes available for predicting the target
variable (original dataset contains 92 variables/columns).
Hence, we do not test the algorithms performance with 27

attributes when lagged variables equal none.

Linear regression imputation

Using linear regression to estimate missing values is im-
proved by including lagged variables from time t − 1 as
predictors (Figure 3). This trend can be observed across
different percentages of missing values and number of
features. This means that regardless of the number of pre-
dictors that were used, including lagged variables from
time t − 1 improves the algorithm’s performance. How-
ever, including more lagged variables (t − 2 and t − 3)
shows minimal improvements in accuracy. Figure 3 also
shows that across different percentages of missing values,
including more than 26 attributes might result in overfit-
ting and reduce overall accuracy. This method of imputa-
tion is accurate with estimated values having on average

0−3.5% deviation from the true values, depending on the
number of periods of lagged variables and the percentage
of missing entries (Figure 3).

kNN imputation

kNN estimation was evaluated using different number of
features and number of nearest neighbors k. The most
accurate estimation is achieved when k ≈ 6 and approxi-
mately 23−24 features are used for the estimation. Figure
4 shows the performance of using kNN estimation with 24

features over different values of k and for data sets with
different percentages of missing entries. This method of
imputation is relatively insensitive to the exact value of k
within the range of 2− 10. Within this range, the differ-
ence in average NRMSD is within approximately 0.1%
(Figure 4). Notably, the performance of kNN declines
when low number of nearest neighbors (k< 3) are used for
the estimation, probably due to overfitting. Performance
of the algorithm also declines when large number of near-
est neighbors (k > 10) are used for the prediction, indicat-
ing that some important details are being smoothed out.
Performance of kNN is also relatively insensitive to the
exact number of attributes (used for the prediction) within
the range of 23−25 (Figure 5). Within this range, change
in NRMSD is below 0.1%. This is consistent across data
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Figure 4: Effect of number of nearest neighbor k used for kNN estimation with 24 features. Different plots correspond
to data sets with different percent of missing entries. Different curves within each plot corresponds to data sets with
different number of lagged variables.

sets containing less missing entries (5%, 10% and 15%).
Similar to using linear regression, performance of using
kNN to estimate missing values is reduced by including
lagged variables from time t− 1 hour as predictors (Fig-
ures 4 and 5). However, including more lagged variables
(t − 2 and t − 3) shows minimal improvements in accu-
racy. This trend is consistent across different number of
features used for the imputation (Figure 5).

SVM imputation

SVM imputation was evaluated using different number of
features and hyperparameter (ε and C) values (Equation
4). One way to choose appropriate values for ε and C is
to use k-fold cross-validation (Hsu et al. 2003). The most
accurate estimation is achieved when ε≈ 2−7, C≈ 25 and
approximately 24− 25 features were used for the impu-
tation. Using SVM for imputation is very accurate after
tuning hyperparameters ε and C, showing approximately
1.25% deviation from the true values for the data set with
20% missing entries (Figure 6). Average NRMSD is the
lowest when with ε = 2−7 and cost C = 25. Performance
of SVM imputation declines when a larger value of ε and
C is used for the estimation. Large values of C places
more weight on the minimization of errors on the train-
ing data, resulting in overfitting and poorer generalization.
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Smaller values of ε result in better performance. However,
performance starts to decline as ε is decreased beyond
2−7. This trend observed in Figure 6 is representative of
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that observed across data sets with different percentages
(5%, 10%, 15% and 20%) of missing entries.
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Figure 6: Effect of hyperparameters epsilon ε and Cost
C used for SVM Imputation on data set with 20% missing
entries. Estimation was carried out using SVM imputation
with 25 features. Different curves corresponds to data sets
with different number of lagged variables.
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C = 25.Different curves corresponds to data sets with dif-
ferent number of lagged variables.

Mean imputation and replacing with zero

Replacing missing values with the attribute’s average or
with zeros are common preprocessing methods before the
data is used in various statistical techniques or as inputs to
building simulation models. Mean imputation, although a
drastic improvement from replacing with zeros has signif-
icantly lower accuracy than either linear regression, kNN

or SVM imputation (Table 3).

Table 3: Performance of mean imputation and replacing
missing values with zero.

Average NRMSD (%)
Percentage

Missing
Mean

Imputation
Replacing
with zero

5% 6.07 28.25
10% 8.25 39.35
15% 10.62 49.93
20% 11.96 56.19

Comparing algorithms
Replacing missing values with zeros shows the largest
spread of NRMSD with a minimum NRMSD of 11.3%
and a maximum NRMSD of 321.7% (Figure 8). Mean
imputation shows drastically better performance with 91
(of the 92) variables estimated with NRMSD under 20%
as compared to 22 (of the 92) variables if missing entries
were replaced by zero. Estimation with linear regression,
kNN or SVM yielded significantly better accuracy than
mean imputation, with all variables being estimated with
NRMSD under 6%. Linear regression was used with lag
variables from period t − 1 as predictors and with 25 at-
tributes selected using a correlation-based feature selec-
tion that selects the attributes with the highest correlation
with the target variable. kNN imputation was carried out
with k= 6, lag variables from period t−1 and 24 attributes
(selected via feature selection). SVM imputation was car-
ried out using the following parameter setting: ε = 2−7

and C = 25; lag variables from period t − 1; and 25 at-
tributes (selected via feature selection). When individual
algorithms are considered at their optimal parameter set-
tings, using SVM for estimating missing entries is more
accurate than other methods such as linear regression and
kNN. This can be observed from Figure 8 where the dis-
tribution of errors for SVM is more right-skewed as com-
pared to kNN and linear regression. When errors for indi-
vidual variables are considered, 25% of the variables were
estimated within 0.5% of its true value with SVM at the
above mentioned parameter setting. With linear regres-
sion and kNN, only 11% and 1% of the variables were es-
timated with NRMSD under 0.5% respectively. Notably,
maximum NRMSD is also lower with SVM imputation
(4.2%) as compared to linear regression (4.8%) and kNN
imputation (5.7%). Overall, SVM imputation shows con-
sistent performance across different types of data. For this
data set, accuracy using linear regression is comparable
and sometimes better because this data set is made up by
measurements from sensors measuring the same property
in different zones, thus the linear relationship between
many variables. For example, lighting power measure-
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ments are expected to have the same trend across different
office spaces in the building.
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Figure 8: Distribution of errors for different algorithms
at their optimal parameter setting for data set with 20%
missing entries.

Figure 9 shows the NRMSD of each of the 92 attributes
for linear regression, kNN and SVM imputation. Parame-
ter settings for each algorithm were as mentioned in the
previous paragraph. Linear regression and SVM have
comparative performance for attributes 1 to 70 (mostly
lighting, equipment and network power measurements)
with kNN having lower accuracy in general. However, lin-
ear squares regression shows significantly higher NRMSD
for some attributes between attributes 70 and 92. These
attributes contain measurements from AHU sensors. In
particular, air and water temperature measurements within
the AHU seems to show poorer performance with linear
regression. SVM with RBF kernel shows better accuracy
for these attributes probably because the relationship be-
tween the target and dependent variables are non-linear.

Simulation
We evaluate the impact of missing value imputation in ac-
tual application by comparing EnergyPlus hourly simula-
tion output with actual measurements. The objective is to
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Figure 9: NRMSD of each of the 92 attributes with dif-
ferent imputation method at their optimal parameter set-
tings.

illustrate how different methods of imputation may affect
model output, giving a false sense of accuracy. This is es-
pecially true in building energy models since these tools
usually requires inputs at an hourly resolution. Data from
July 24, 2015 to August 31, 2015 was used for model
training and data from September 1, 2015 to September
24, 2015 was used as the test data set. 20% of data was
randomly removed from the test data set. Missing val-
ues were imputed using different methods before they are
used as inputs to the EnergyPlus building energy simu-
lation model. The simulation output that was evaluated
are the lighting, equipment and network energy consump-
tion (Table 4). Accuracy was evaluated using coefficient
of variation of the root mean square error (CVRMSE)
and normalized mean bias error (NMBE), metrics that
are commonly used to evaluate calibrated building en-
ergy simulation models. According to (ASHRAE 2002),
if hourly calibration data are used, CVRMSE and NMBE
shall be below 10% and 30% respectively. Both mean
imputation and replacing with zero are common prepro-
cessing methods before data is used for simulation. Re-
placing with zero tends to underestimate energy consump-
tion as observed from its negative NMBE (Table 4). This
is expected since power measurements are typically posi-
tive. Mean imputation yielded results that are significantly
better accuracy (both CVRMSE and NMBE). However,
imputation with either linear regression, kNN or SVM
yielded simulation results that is significantly closer to ac-
tual values as compared to both methods (Table 4).

CONCLUSION
The objective of this paper is to illustrate the importance
of predicting missing values and how it may affect the

This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. 413



Table 4: CVRMSE and NMBE of simulation with data imputation by different methods.
Lighting Equipment Power Network

Method CVRMSE NMBE CVRMSE NMBE CVRMSE NMBE
Replacing with zero 30.4% -18.7% 29.0% -19.7% 31.1% -20.4%

Mean imputation 21.3% 1.46% 8.08% -0.35% 15.1% -0.45%
Linear regression 2.46% 0.08% 2.18% -0.04% 0.62% -0.04%

kNN 2.99% -0.27% 2.26% 0.10% 0.75% -0.06%
SVM 2.49% -0.24% 2.12% -0.08% 0.68% -0.08%

accuracy of building energy simulation. This paper has
shown that linear regression, kNN and SVM are more
accurate for estimating missing values in building sen-
sor data as compared to replacing with zero or mean im-
putation. Linear regression shows better accuracy when
there is a linear relationship between the target and de-
pendent variables. On the contrary, SVM shows better
accuracy when this relationship is non-linear. All three
methods show significant improvements over replacing
with zero or mean imputation by taking advantage of the
patterns and relationships with other variables. Based on
the results of this study, we recommend SVM imputation
because of its ability to model non-linear relationships.
However, where there are many sensors measuring the
same property in different zones, linear regression shows
comparable and sometimes better performance. We also
recommend the inclusion of lagged variables from time
t−1 as predictors for better performance.
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