
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1319
https://doi.org/10.26868/25222708.2017.336

A Comparison of MCMC Algorithms for the

Bayesian Calibration of Building Energy Models

for Building Simulation 2017 Conference

Adrian Chong1, Khee Poh Lam1

1Center for Building Performance and Diagnostics, Carnegie Mellon University, Pittsburgh, USA

Abstract

Random walk Metropolis and Gibbs sampling are
Markov Chain Monte Carlo (MCMC) algorithms that
are typically used for the Bayesian calibration of
building energy models. However, these algorithms
can be challenging to tune and achieve convergence
when there is a large number of parameters. An alter-
native sampling method is Hamiltonian Monte Carlo
(HMC) whose properties allow it to avoid the ran-
dom walk behavior and converge to the target distri-
bution more easily in complicated high-dimensional
problems. Using a case study, we evaluate the ef-
fectiveness of three MCMC algorithms: (1) random
walk Metropolis, (2) Gibbs sampling and (3) No-U-
Turn Sampler (NUTS) (Hoffman and Gelman, 2014),
an extension of HMC. The evaluation was carried out
using a Bayesian approach that follows Kennedy and
O’Hagan (2001). We combine field and simulation
data using the statistical formulation developed by
Higdon et al. (2004). It was found that NUTS is more
effective for the Bayesian calibration of building en-
ergy models as compared to random walk Metropolis
and Gibbs sampling.

Introduction

Detailed building energy models have been increas-
ingly used in the analysis of building energy con-
sumption and the evaluation of energy conservation
measures. To ensure its reliability, model calibration
has been recognized as an integral component to the
overall analysis. A detailed description of the build-
ing’s geometry, it’s associated HVAC system, and the
quantification of various internal loads is typically re-
quired as inputs to the model. However, detailed
information is seldom available. Inarguably, uncer-
tainty quantification becomes an important process
in the use of detailed building energy models. Conse-
quently, issues such as the calibration of input param-
eters, prediction accuracy, and prediction uncertainty
would be of particular interest.

Many approaches for calibrating building energy
models have been proposed, requiring various degrees
of automation, manual tuning and expert judgment
(Coakley et al., 2014). In particular, there has been

increasing efforts in a Bayesian approach for the cal-
ibration of building energy models (Heo et al., 2012,
2015; Manfren et al., 2013; Chong and Lam, 2015; Li
et al., 2016). This is because of its ability to quan-
tify uncertainties in input parameters while at the
same time reducing discrepancies between simulation
output and physical measurements. In the Bayesian
calibration of building energy models, Markov Chain
Monte Carlo (MCMC) methods are a common way
for sampling from the posterior distributions of the
calibration parameters. Its widespread use can be
attributed to its ease of use in a wide variety of
problems. Two basic MCMC algorithms are random
walk Metropolis and Gibbs sampling. random walk
Metropolis is routinely used in the Bayesian calibra-
tion process due to its simple implementation. The
random walk Metropolis algorithm (Metropolis et al.,
1953) can be summarized as follows:

1. Arbitrarily select a valid initial starting point t0.

2. Suppose t0, t1, ..., ti have been generated. Gener-
ate a candidate value t∗ from a symmetric pro-
posal distribution given ti.

3. Calculate the Metropolis acceptance probability
r, the probability of transitioning to the new can-
didate value

r = min

{
p(t∗|y)

p(ti|y)
, 1

}
(1)

4. Accept and set ti+1 to the new candidate value
with probability r or stay at the same point with
probability 1− r.

ti+1 =

{
t∗ with probability r

ti with probability 1− r
(2)

Gibbs sampling (Geman and Geman, 1984) proceeds
by sampling each parameter from its conditional dis-
tribution while holding the remaining parameters
fixed at their current values. To illustrate, suppose
there are d parameters t1, t2, ..., td. At each iteration
i, Gibbs sampling cycles through each parameter tj ,
and samples it from its conditional distribution given
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the current value of the other parameters. This can
be expressed by the following equation:

tij ∼ p(tj |ti1, ..., tij−1, ti−1j+1, ..., t
i−1
d ) (3)

where ti1, ..., t
i
j−1, t

i−1
j+1, ..., t

i−1
d represents all other pa-

rameters at their current values except tj .
An alternative sampling method that has been gain-
ing interest is Hamiltonian Monte Carlo (HMC).
HMC avoids the random walk behavior inherent in
random walk Metropolis algorithm and Gibbs sam-
pling by using first-order gradient information to de-
termine how it moves through the target distribu-
tion (Hoffman and Gelman, 2014). The properties of
HMC allows it to converge to the target distribution
more quickly in complicated high-dimensional prob-
lems (Neal, 1993). However, HMC requires users to
provide values of two hyperparameters: a step size ε
and the number of steps L, making it difficult and
time consuming to tune. To mitigate the challenges
of tuning, the No-U-Turn Sampler (NUTS) was de-
veloped by Hoffman and Gelman (2014). NUTS uses
a recursive algorithm to automatically tune the HMC
algorithm without requiring user intervention or time
consuming tuning runs was used.
Previous studies have been focused on the applica-
tion of Bayesian calibration to building energy mod-
els without sufficient emphasis on the inference and
assessment of convergence. Currently, the Bayesian
calibration of a building energy model is considered to
be complete when the model’s output meets the error
criteria set out by ASHRAE guideline 14 (ASHRAE,
2002). However, if the MCMC algorithm has not
proceeded long enough, the generated samples may
be grossly unrepresentative of the target posterior
distributions (Gelman et al., 2014). In this paper,
the objective is to evaluate the effectiveness of three
MCMC algorithms (random walk Metropolis, Gibbs
sampling and NUTS) within the Bayesian calibration
framework by Kennedy and O’Hagan (2001).

Method

We evaluate the effectiveness of three MCMC algo-
rithms (random walk Metropolis, Gibbs sampling and
NUTS) by applying each algorithm to a Bayesian cal-
ibration approach that follows Kennedy and O’Hagan
(2001). The process is as follows:

1. Build EnergyPlus model using construction draw-
ings, design specifications and measured data

2. Conduct sensitivity analysis to reduce number of
calibration parameters and avoid overfitting the
model. Train a Gaussian process (GP) emulator
to map the energy model’s input parameters to
the model output of interest.

3. Apply Bayesian calibration to the GP emulator
(Kennedy and O’Hagan, 2001). The Bayesian cal-
ibration process would be repeated using different
MCMC algorithms.

LoadProfile:Plant
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Water Pump

Chiller 1

Chiller2

Cooling 
Tower 1

Cooling 
Tower 2

Condenser 
Water Pump

Chilled Water Loop
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Figure 1: Diagram of cooling system modelled in En-
ergyPlus.

4. Compare the effectiveness of different MCMC
algorithm using trace plots and Gelman-Rubin
statistics to diagnose convergence to the posterior
distribution.

We illustrate each step in the subsequent subsections
with a case study.

EnergyPlus model
As a first step, the cooling system of a large ten-
story office building located in Pennsylvania U.S.A
was modelled using EnergyPlus version 8.5. The En-
ergyPlus model was built based on construction draw-
ings, design specifications and site visits, and consists
of the following functional parts (Figure 1): (a) Loads
from cooling coil that transfers heat from air to wa-
ter; (b) Two chillers connected in parallel that cools
the water; (c) Chilled-water distribution pumps that
send chilled water to the loads; (d) Condenser wa-
ter pumps for circulation in the condenser loop; and
(e) Two cooling towers in parallel that rejects heat
from the chillers to the atmosphere. The Energy-
Plus objects used to model these components include
the LoadProfile:Plant object, the Chiller:Electric:EIR
object, the Pump:VariableSpeed object and the Cool-
ingTower:SingleSpeed object. Initial values were as-
signed to the model parameters based on measured
data and design specifications (Table 1).
The LoadProfile:Plant object is used to simulate a
scheduled demand profile when the coil loads are al-
ready known (LBNL, 2016b). This makes it possible
to isolate and calibrate the HVAC system without
any propagation of uncertainties due to calculation
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of building loads. Hourly demanded loads were calcu-
lated based on the following equation (LBNL, 2016a):

Qload = ṁcp(Tin − Tout) (4)

where Tout and Tin denotes the outlet and inlet water
temperature respectively; Qload is the scheduled coil
load; ṁ is the mass flow rate; and cp is the specific
heat of water .
The Chiller:Electric:EIR object uses performance in-
formation at reference conditions along with three
performance curves to determine the chiller’s per-
formance at off-reference conditions (LBNL, 2016a).
The three performance curves are: (1) Cooling
Capacity Function of Temperature Curve (CapFT)
(Equation 5), (2) Energy Input to Cooling Out-
put Ratio Function of Temperature Curve (EIRFT)
(Equation 6), and (3) Energy Input to Cooling Out-
put Ratio Function of Part Load Ratio Curve (EIRF-
PLR) (Equation 7).

CapFT = a1 + b1(Tcw,l) + c1(Tcw,l)
2+

d1(Tcond,e) + e1(Tcond,e)
2 + f1(Tcw,l)(Tcond,e)

(5)

EIRFT = a2 + b2(Tcw,l) + c2(Tcw,l)
2+

d2(Tcond,e) + e2(Tcond,e)
2 + f2(Tcw,l)(Tcond,e)

(6)

EIRFPLR = a3 + b3(PLR) + c3(PLR)2 (7)

Tcw,l and Tcond,e denotes the leaving chilled water
temperature and entering condenser fluid tempera-
ture respectively; Qref and COPref are the chiller’s
capacity and coefficient of performance (COP) at ref-
erence conditions; and PLR is the chiller part-load
ratio and equals cooling load

(Qref )(CAPFT ) . Using Equations 5

to 7, chiller power under a specific operating condi-
tion can be determined by the following equation.

Pchiller =
Qref

COPref
(CapFT )(EIRFT ) (8)

Inputs to this chiller model (Qref , COPref , regres-
sion coefficients of Equations 5, 6 and 7) were deter-
mined based on measured data using the reference-
curve method that was proposed by Hydeman and
Gillespie Jr (2002).
The Pump:VariableSpeed object calculates the power
consumption of a variable speed pump using a cubic
curve (Equation 9) (LBNL, 2016b).

FFLP = a5+b5(PLR)+c5(PLR)2+d5(PLR)3 (9)

where PLR = Flow Rate
Design Flow Rate . Using Equation 9,

pump power is calculated by the following equation.

Ppump = (Pdesign)(FFLP )(Effmotor) (10)

where Pdesign is the design power consumption and
Effmotor is the motor efficiency. Inputs to the pump
model were assigned using measurement of flow rate
and pump power consumption. We assign a value of
1 to motor efficiency because pump motor inefficien-
cies are already accounted for in the measurements
of flow and power. We use least squares regression
to compute the coefficients of Equation 9 with PLR
and FFLP calculated as follows:

FFLPi =
poweri

max(power1, power2, ..., powern)
(11)

PLRi =
flowi

max(flow1, f low2, ..., f lown)
(12)

Sensitivity analysis

Before calibrating the model, sensitivity analysis was
performed to identify the parameters that have the
most influence over the model’s output. The objec-
tive is to reduce the number of calibration parameters
and use only important factors in the calibration pro-
cess. This not only reduces computation cost but also
helps mitigate overfitting. Morris method (Morris,
1991) was used to carry out the sensitivity analysis.
This was executed with R sensitivity package (Pujol
et al., 2016).
Ten parameters in the cooling system were selected
as uncertain (Table 1). Although the set of uncer-
tain parameters are specific to this case study, they
correspond to the set of parameters typically selected
as random variables for the cooling system. All pa-
rameters were assigned a uniform distribution. Pump
motor efficiency was varied between 0.6 and 1.0. The
remaining 8 parameters were varied ±20% of their
initial values. Design fan power and nominal capac-
ity of cooling towers 1 and 2 were modeled as a single
random variable because they have the same make
and specification and were installed at the same time
(Table 1). On the contrary, chillers 1 and 2 have
very different capacity and COP at reference condi-
tions and hence were modeled as separate random
variables. We use the modified mean µ∗ proposed by
Campolongo et al. (2007) and standard deviation σ

Table 1: List of model parameters and their range.

Model parameter Symbol Initial Value Min Max
Chiller 1:
Reference Capacity θ1 653378 522702 784053
Reference COP θ2 6.86 5.49 8.23

Chiller 2:
Reference Capacity θ3 243988 195190 292785
Reference COP θ4 2.32 1.85 2.78
Chilled water pump:
Design Power Consumption θ5 18190 14552 21828
Motor Efficiency θ6 1.0 0.6 1.0
Condenser water pump:
Design Power Consumption θ7 11592 9274 13911
Motor Efficiency θ8 1.0 0.6 1.0
Cooling Tower 1 and 2:
Design Fan Power θ9 11592 9274 13911
Nominal Capacity θ10 549657 439726 659589
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Figure 2: Sensitivity analysis (Morris method) of pa-
rameters in Table 1.

to determine which parameters are sensitive. Param-
eters θ5−θ9 have µ∗ and σ of approximately zero indi-
cating that they are negligible parameters and should
be excluded (Figure 2). Hence, only the top 5 param-
eters (θ1, θ2, θ3, θ4, and θ10) would be used for the
Bayesian calibration of the EnergyPlus model.

Bayesian calibration
A Bayesian calibration approach that follows that of
Kennedy and O’Hagan (2001) was employed for this
study. The formulation explicitly models uncertainty
in calibration parameters, uncertainty due to discrep-
ancy between the simulator and actual physical sys-
tem, and observation errors as follows:

y(x) = η(x, t) + δ(x) + ε(x) (13)

η(x, t) denotes the building energy simulator output
given input vector (x, t), where t represents the cali-
bration parameters required as inputs to the energy
model computed at known conditions x. Note that
we make a distinction between the uncertain param-
eters θ and the calibration parameters t, where the
calibration parameters t refer to the parameters that
were selected from the set of uncertain parameters
θ based on the results of the sensitivity analysis as
described in the previous section. The term δ(x) is
used to account for discrepancies between the sim-
ulator η(x, t) and the actual physical system. ε(x)
denotes observation error.
Field data and simulation data were combined us-
ing the statistical formulation developed by Higdon
et al. (2004). Table 2 summarizes the data used to
construct the field and simulation data for the case
study. η(x, t) denotes the output of the EnergyPlus
simulation which depends on the observable inputs to
the model x and the unknown calibration parameters

Table 2: Description of different parts used for
Bayesian calibration of the case study.

Symbol Description
y(x) Observed hourly cooling energy con-

sumption at corresponding values of x
η(x, t) Hourly cooling energy consumption

prediction using EnergyPlus at corre-
sponding values of observable inputs x
and unknown calibration parameters t

x Observed hourly cooling coil load and
chilled water flow rate

t Calibration parameters t1 = θ1, t2 =
θ2, t3 = θ3, t4 = θ4 and t5 = θ10 (Table
1 and Figure 2). Values were set using
LHS design

t. To learn about the calibration parameters t, Ener-
gyPlus simulations were run at the same observable
inputs x in our computer design of experiments. The
corresponding calibration parameters t for the simu-
lation runs were determined using Latin Hypercube
sampling (LHS) to ensure sufficient coverage of the
parameter space.
Since the energy model is computationally expensive
to evaluate, a key element of this approach is the
use of a Gaussian Process (GP) model to carry out
the inference during the MCMC sampling procedure,
mapping the energy model’s input parameters to the
model output of interest. A mean function µ(x, t) and
covariance function Cov((x, t), (x′, t′)) is required to
specify a GP model. For simplicity, we specify a mean
function that is set to zero and a covariance function
that follows Higdon et al. (2004) with the form:

Cov((x, t), (x′, t′)) =

1

λη
exp

{
−

p∑
j=1

βηj |xij − x
′
ij |α −

q∑
k=1

βηp+k|tik − t
′
ik|α

}
(14)

where λη is the variance hyperparameter and βη is the
correlation hyperparameter of the GP model. The
discrepancy term δ(x) was also modelled as a GP
model with mean function set to zero and a covari-
ance function of the form:

Cov(x, x′) =
1

λδ
exp

{
−

p∑
k=1

βδk|xik − x′ik|α
}

(15)

α was set to 2 for both covaraiance functions. Fi-
nally, observations errors ε(x) was modelled as Gaus-
sian noise:

ε(x) ∼ N (0, I/λε) (16)

For estimating the calibration parameters (θ), cor-
relation hyperparameters (βη and βδ), and variance
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hyperparameters (λη, λδ and λε), we use MCMC to
explore and generate samples from their posterior dis-
tributions.

Comparison of MCMC algorithms

We compare the effectiveness of three MCMC algo-
rithms: NUTS (a variant of HMC) and the more com-
monly used random walk Metropolis and Gibbs sam-
pling. The comparison was carried out by checking
for mixing and convergence to the target distribution
using the following metrics

• Trace plots: trace plots are plots of the chains
versus the sample index and can be useful for
assessing convergence (Gelman et al., 2014). If
the distribution of points remains relatively con-
stant, it suggests that the chain might have con-
verged to the stationary distribution. A trace
can also tell you whether the chain is mixing well.

• Gelman-Rubin statistics (R̂): R̂ is the ratio of
between-chain variance to within-chain variance
and is based on the concept that if multiple
chains have converged, there should be little vari-
ability between and within the chains (Gelman
et al., 2014). For convergence, R̂ should be ap-
proximately 1± 0.1.

For comparison, the same number of iterations were
run for all three algorithms. Four independent
chains of 10,000 iterations per chain were run for
each MCMC algorithm with the first 5,000 iterations
(50%) discarded as warmup/burn-in to reduce the
influence of the starting values. For random walk
Metropolis, an additional tuning of the acceptance
ratio was required. It is generally accepted that the
optimal acceptance rate of the Metropolis algorithm
is about 20% (Gelman et al., 1996). We used a
normal proposal/jumping distribution and tuned its
variance until an acceptance rate of between 20%
and 25% was achieved. The random walk Metropolis
took a shorter time to run than the NUTS for a
single chain of 10,000 iterations. However, after
considering the iterative tuning process, NUTS ran
faster since approximately three to four iterations
were required to achieve an acceptance rate of about
20% with random walk Metropolis. Gibbs sampling
took significantly longer to run than NUTS and
random walk Metropolis, since the algorithm cycles
through each parameter at each iteration.

Figures 3, 4, 5 and 6 provides a visual comparison of
the trace plots (10,000 iterations including warmup)
with samples generated by the three different MCMC
algorithms. Random walk Metropolis demonstrates
bad mixing for the calibration parameters t (Figure
3), indicating that the algorithm does not sufficiently
explore the parameter space. After 10,000 iterations
the calibration parameters have R̂ between 1.89 and
2.51 (Table 3), indicating that the variance between
the four independent chains are still greater than the

Table 3: R̂ of calibration parameters with different
MCMC algorithms.

Parameters Random
Metropolis

Gibbs
Sampling

NUTS
(HMC)

t1 1.89 1.00 1.00
t2 2.51 1.00 1.00
t3 1.98 1.00 1.00
t4 2.16 1.00 1.00
t5 1.93 1.00 1.00

Table 4: R̂ of hyperparameters with different MCMC
algorithms.

Hyper-
parameters

Random
Metropolis

Gibbs
Sampling

NUTS
(HMC)

βη1 3.49 1.00 1.00
βη2 2.73 1.00 1.00
βη3 7.87 1.01 1.00
βη4 1.57 1.01 1.00
βη5 1.58 1.00 1.00
βη6 2.94 1.01 1.00
βη7 1.95 1.03 1.00
βδ1 2.46 1.00 1.00
βδ2 4.05 1.00 1.00
λη 33.26 1.00 1.00
λδ 302.38 1.05 1.00
λε 1299.79 1.46 1.00

variance within. Gibbs sampling and NUTS performs
better, with the calibration parameters t achieving
adequate convergence (1±0.1) after 10,000 iterations.
Trace plots also shows good mixing for both Gibbs
sampling and NUTS.

As expected, with random walk Metropolis, the cor-
relation hyperparameters βη1−7 (Figure 4) and βδ1,2
(Figure 5) of the GP model do not appear to be sta-
ble. It is also clear that for βη1 , βη2 , βη3 , βδ1 and βδ2
the different chains have not converged to a common
distribution. On the contrary, trace plots of sam-
ples generated by Gibbs sampling and NUTS indi-
cates rapid mixing for the correlation hyperpareme-
ters βη1−7 (Figure 4) and βδ1,2 (Figure 5). Compar-

ing R̂ for the correlation hyperparemeters, Table 4
shows that after 10,000 iterations, the samples gener-
ated by random walk Metropolis have not converged
yet (1.5 < R̂ < 7.9). However, samples generated
by Gibbs sampling and NUTS have converged ade-
quately with R̂ within 1.0± 0.1 for all βη and βδ.

Figure 6 shows the trace plots for the variance hy-
perparameters λη, λδ, and λε. From the figure, it
can be observed that with random walk Metropolis,
the chains are moving very slowly (due to low accep-
tance rates), and after 10,000 iterations the parallel
sequences still have not converged to a common dis-
tribution. Gibbs sampling performs better, showing
rapid mixing for λη and slower but adequate mixing
for λδ. However, the trace plots show that λε is mov-
ing very slowly through the parameter space, advanc-
ing to the target distribution only after 5,000 itera-
tions. The small step size also suggests poor mixing
and that more iterations are needed to achieve ade-
quate convergence. On the contrary, NUTS is able
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Table 5: R̂ of calibration parameters and hyperparam-
eters with 50, 500 and 2000 iterations and 4 indepen-
dent chains using NUTS and Gibbs sampling. Values
exceeding 1± 0.1 are in red font

Number of Iterations
50 500 2000

NUTS Gibbs NUTS Gibbs NUTS Gibbs
t1 1.00 1.05 1.00 1.03 1.00 1.07
t2 1.10 1.06 1.00 1.01 1.00 1.01
t3 1.06 1.20 1.01 1.01 1.00 1.01
t4 1.00 1.49 1.00 1.04 1.00 1.01
t5 1.03 1.04 1.00 1.01 1.00 1.00
βη1 1.03 7.22 1.00 1.77 1.00 2.91
βη2 1.01 1.84 1.00 1.20 1.00 1.43
βη3 0.98 1.43 1.00 1.40 1.00 1.49
βη4 0.98 1.30 1.00 1.03 1.00 1.02
βη5 1.01 1.53 1.00 1.01 1.00 1.04
βη6 1.02 1.57 1.00 1.05 1.00 1.05
βη7 1.02 1.77 1.00 1.25 1.00 1.08
βδ1 0.97 1.29 1.00 1.00 1.00 1.02
βδ2 1.06 1.02 1.00 1.06 1.00 1.00
λη 1.00 1.39 1.00 1.02 1.00 1.01
λδ 1.11 17.97 1.00 2.15 1.00 1.42
λε 0.98 179.00 1.00 38.66 1.00 11.08

generate samples of the variance hyperparameters ef-
fectively, as shown by the rapid mixing within each
independent chain. Additionally, after 10,000 itera-
tions, samples generated by random walk Metropolis
still have very large R̂, suggesting that the algorithm
needs to be run much longer (Table 4). R̂ for samples
generated by Gibbs sampling perform much better.
However, R̂ = 1.46 for λε suggests that slightly more
iterations is required before adequate convergence can
be achieved. Samples generated by NUTS performs
the best, having R̂ = 1.00 for all the variance hyper-
parameters.

To summarize, using random walk Metropolis results
in very poor performance. After 10,000 iterations,
none of the calibration parameters and hyperparam-
eters achieved adequate convergence. R̂ values were
larger than 1.1 and the trace plots also show poor
mixing. To achieve convergence with random walk
Metropolis, the step size of the jumping distribution
needs to be further tuned. Bad mixing may also be
due to strong correlations in the parameter space.

Gibbs sampling show significantly better performance
with all calibration parameters and hyperparameters
achieving adequate convergence, with the exception
of λε. The trace plot and R̂ of λε suggests that it
is close to converging to the posterior distribution.
Hence running Gibbs sampling for slightly more iter-
ations should result in adequate convergence for all
calibration parameters and hyperparameters. NUTS
shows the best performance with R̂ values of ex-
actly 1.00 for all calibration parameters and hyper-
paramters, indicating adequate convergence. Trace
plots of all samples generated by NUTS also show
rapid mixing. Furthermore, NUTS require a lot less

iterations to converge (Table 5) due to the rapid mix-
ing in the chains . After 50 iterations, R̂ is already
close to 1.00 for all calibration parameters and GP
hyperparameters. With 500 iterations, the four inde-
pendent chains have certainly achieved adequate con-
vergence. In comparison to Gibbs sampling, after 50
iterations, almost all parameters have not converged
(Table 5). After 500 and 2000 iterations, the cali-
bration parameters t have adequately converged but
several GP hyperparameters still have R̂ larger than
1.1, indicating the variance between the four chains
are still larger than the variance within. This suggests
that it is harder to achieve adequate convergence for
the GP hyperparameters and that users should pay
greater attention to the assessing convergence of these
hyperparameters.

Conclusion
The effectiveness of three MCMC algorithms (random
walk Metropolis, Gibbs sampling and NUTS) were
evaluated in this paper. An EnergyPlus model was
first built. This is followed by using sensitivity anal-
ysis to reduce the number of calibration parameters.
Measured data and simulation data were then com-
bined using the statistical formulation developed by
Higdon et al. (2004), which closely follows Kennedy
and O’Hagan (2001) Bayesian calibration approach.
Since the energy model is computationally expensive
to evaluate, a key element of this approach is the use
of a Gaussian Process (GP) emulator. Each of the
three MCMC algorithms was separately used to es-
timate the posterior distributions of the calibration
parameters (t) and the GP hyperparameters (βη, βδ,
λη, λδ and λε).

From the trace plots and Gelman-Rubin statistics (R̂)
of the samples generated by each algorithm, it was
found that NUTS is able to achieve adequate conver-
gence to the posterior distribution the fastest, with
significantly lesser number of iterations. This study
showed that using NUTS, it is possible to achieve
adequate convergence with significantly lesser num-
ber of iterations (approximately 500 iterations) and
no hand tuning at all. Random walk Metropolis
showed the poorest performance with none of the
parameters showing convergence after 10,000 itera-
tions. Gibbs sampling showed significant improve-
ments in sampling effectiveness as compared to ran-
dom walk Metropolis but may require large number
of iterations to achieve convergence. In conclusion,
this study showed that for the Bayesian calibration of
building energy models, compared to the commonly
used random walk Metropolis and Gibbs sampling,
NUTS was able to more effectively generate samples
from the posterior distributions of the calibration pa-
rameters and GP hyperparameters.



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1325

Figure 3: Trace plot of calibration parameters t (Table 1). Four independent chains of 10000 iterations per
chain were run for each MCMC algorithm.
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Figure 4: Trace plots of correlation hyperparameters βη1 to βη7 . Four independent chains of 10000 iterations per
chain were run for each MCMC algorithm.
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Figure 5: Trace plots of correlation hyperparameters βδ1 and βδ2 . Four independent chains of 10000 iterations
per chain were run for each MCMC algorithm.

Figure 6: Trace plots of variance hyperparameters λη, λδ, and λε. Four independent chains of 10000 iterations
per chain were run for each MCMC algorithm.
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