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Abstract

With the emergence of the Internet of Things (IoT),
there is an opportunity to create a digital twin of a
building that continuously learns and updates itself
using real-time observations. Model calibration is an
essential aspect of the overall process to ensure its re-
liability. However, the calibration of building energy
models (BEM) is typically carried out only once and
can quickly become outdated. Continuous Bayesian
calibration reduces the effort to maintain an energy
model while accounting for its uncertainty. Invari-
ably, the model would be up-to-date for use in appli-
cations such as retrofit analysis, fault detection, and
model predictive control. The present paper aims to
present the concept and implementation of a frame-
work for the continuous calibration of BEM with un-
certainty. The proposed framework includes instance
selection as a pre-processing step to keep the calibra-
tion process computationally tractable.

Introduction

Building performance simulation was initially devel-
oped for use during the design phase to support en-
ergy efficient design and improve occupant comfort.
With the emergence of the Internet of Things (IoT),
the promise of a digital twin of building energy sys-
tems is becoming a reality. Digital twins act as the
bridge between the physical and digital worlds and
can be defined as a virtual model that is connected
to its physical counterpart through real-time data us-
ing sensors and IoT. Put differently, the digital twin
of a building can be a building energy model (BEM)
that continuously learns and updates itself using real-
time data from sensors and the building management
system (BMS). A continuous calibration approach re-
duces the effort needed to maintain the BEM. As a
result, the model is kept current and ready to sup-
port retrofit analysis (Heo et al., 2015), fault detec-
tion (Dong et al., 2012), and model predictive controls
(Zhang et al., 2018) throughout the life-cycle of the
building (Chong et al., 2019).

Model calibration is an integral component of the
overall analysis to ensure its reliability. According

to Coakley et al. (2014), BEM calibration methods
are either manual or automated. Manual calibration
involves manual iterative tuning of the BEM and re-
quires the modeler to have in-depth knowledge of the
building system and its operations (Pedrini et al.,
2002; Ian Shapiro, 2009). Automated approaches
overcome the need for labor-intensive manual tuning
by integrating mathematical methods into the cali-
bration process (Reddy, 2006; Coakley et al., 2014).
Examples of automated BEM calibration includes the
use of optimization algorithms with objective func-
tions aimed at minimizing the discrepancies between
measured data and BEM predictions (Sun et al., 2016;
Chaudhary et al., 2016).

Automated approaches also includes Bayesian cali-
bration, which has been gaining increasing interest
because of its ability to include uncertainty as well as
expert knowledge in the form of priors (Tian et al.,
2018). Also, the ability to include uncertainty is at-
tractive because BEM calibration is an inverse prob-
lem that is ill-posed in most practical situations. The
available data is usually not enough for identifying
a unique solution given a large number of model in-
put parameters. As a result, calibrating these mod-
els with limited data might lead to identifiability is-
sues and a wide variety of model uncertainties de-
spite the model having been calibrated (Chong and
Menberg, 2018). Gaussian process (GP) models are
often used as surrogates or emulator of the compu-
tationally intensive BEM to reduce the time needed
to complete the calibration, which can be demand-
ing since Bayesian calibration usually requires a large
number of simulations to be run. GP models are often
used because of their flexibility. Despite their higher
computation costs, GP models have been shown to
provide the best accuracy (Lim and Zhai, 2017). To
alleviate the high computation cost of using GP em-
ulators, several methods have been proposed, includ-
ing the use of linear regression models in place of GP
models (Li et al., 2016), using Hamiltonian Monte
Carlo (HMC) algorithm for more efficient Markov
Chain Monte Carlo sampling (Chong and Lam, 2017;
Menberg et al., 2017), as well as using a smaller rep-
resentative subset of the data for the Bayesian cali-



bration (Chong et al., 2017).

Despite these advances in automated BEM calibra-
tion, the continuous updating and calibration of BEM
remain mostly unexplored. Additionally, Bayesian
approaches tend to be too time-consuming for use
within a continuous calibration framework. There-
fore, in expectation of the emergence of IoT and the
digital twin technology, this paper aims to present the
concept and implementation of a framework for the
continuous calibration of building energy models that
take into account uncertainty while being computa-
tionally tractable.

Method

Fig. 1 shows an overview of the proposed framework
for the continuous calibration, which repeatedly cal-
ibrates the model over a moving time horizon T to
keep the model up to date continuously. The overall
process can be summarized as follows:

1. Create training data. Training data used for the
calibration is the historical data that has been
collected. The data is then separated into two
datasets containing only weekday and weekend
data respectively.

2. Forecast weather. Forecast relevant weather pa-
rameters (Xpred) for the period of prediction T .
For our case study, this is the outdoor dry-bulb
temperature and the outdoor relative humidity,
which is selected by variable importance measures
of random forest regression with a threshold of
0.2.

3. Instance selection. Select k training examples
from both the weekday and weekend datasets that
are closest to each instance of Xpred using the k-
nearest neighbor (k-NN) algorithm.

4. Sensitivity analysis. Sensitivity analysis is car-
ried out using the Morris method (Morris, 1991)
to select the most influential parameters for the
calibration.

5. Bayesian calibration.

6. Repeat steps 1 to 5.

Case study

The case study building used in this study is an ac-
tual ten-story office building located in Pennsylvania,
U.S.A. The installed HVAC system is a dual duct sys-
tem. In the dual duct system, the cold and warm
air are separately duct and mixed at each terminal
box to achieve the desired temperature. Cooling is
provided through two water-cooled chillers connected
in parallel and heating through two gas boilers also
connected in parallel. The model was created using
EnergyPlus version 8.6 and was modeled according to
the construction drawings and specifications. Seven
months of daily measured electrical energy consump-
tion was used to demonstrate the proposed continu-
ous Bayesian calibration framework.
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Figure 1: Overview of the proposed framework for
the continuous Bayesian calibration of building en-
ergy models.

Before calibrating the model, a sensitivity analysis
was carried out using Morris method (Morris, 1991)
to identify influential parameters. To prevent identi-
fiable issues (Chong and Menberg, 2018), only the top
four most influential parameters were selected for the
calibration and they are (1) equipment power density
[W/m2], (2) cooling setpoint temperature [◦C], (3)
lighting power density [W/m2], and (4) fan efficiency
[−].

Continuous Bayesian calibration

The continuous Bayesian calibration approach pre-
sented in this section is based on Chong et al. (2019),
and is proposed because it provides a flexible frame-
work for dynamically updating model parameters
while at the same time account for their uncertain-
ties. As “new data” arrive, the “existing data” is
not discarded but instead assimilated to the new data
through the use of priors.

Bayesian calibration was carried out following the
statistical formulation proposed by (Kennedy and
O’Hagan, 2001), which explicitly models parameter
uncertainty, model discrepancy, and observation er-
ror (eq. 1).

y(x) = η(x, t) + δ(x) + ε(x) (1)

where y(x) is the field observations; η(x, t) is the
BEM prediction for a given observable inputs x and



calibration parameters t; δ(x) is the model discrep-
ancy; and ε(x) is the observation error. The inputs
and output used for the Bayesian calibration of our
case study is as follows:

• Observed output y(x): Measured electrical en-
ergy consumption [kWh].

• Simulation output η(x, t): Predicted electrical
energy consumption [kWh]

• Observed inputs x:

(a) x1: Outdoor dry-bulb air temperature [◦C].
(b) x2: Outdoor relative humidity [%].
(c) x3: Solar radiation rate per area [W/m2].

• Calibration parameters t:

(a) t1: Equipment power density [W/m2].
(b) t2: Cooling setpoint temperature [◦C].
(c) t3: Lighting power density [W/m2].
(d) t4: AHU fan efficiency [-].

Since the BEM can be computationally expensive to
evaluate, a Gaussian process (GP) model is used as
an emulator or surrogate model during the iterative
calibration process. Field and computer simulation
data are combined in the GP model according to the
framework described in (Higdon et al., 2004). Hamil-
tonian Monte Carlo (HMC), which is a Markov Chain
Monte Carlo (MCMC) method is then used to sample
from the posterior probability distributions because
it is more efficient and provides better convergence
(Chong and Lam, 2017; Menberg et al., 2017). De-
tails of the Bayesian calibration and Gaussian process
can be found in (Chong and Menberg, 2018).

A time-series database supports the proposed contin-
uous Bayesian calibration method through a Repre-
sentational State Transfer (REST) application pro-
gram interface (API) (Fig. 2). The time-series
database is used to provide optimal handling of time-
series data collected real-time from the building man-
agement system (BMS). Through a RESTful API, the
collected data could easily be retrieved with simple
HyperText Transfer Protocol (HTTP) methods, and
subsequently used for Bayesian calibration. Continu-
ous Bayesian calibration is carried out based on the
principals of a receding horizon, which uses a sliding
time window. The sliding window moves forward at
each sampling time and re-calibrates the BEM using
the measured data and the last estimated parameter
values out of the previous window as the prior knowl-
edge. Suppose at time t with a time interval extend-
ing T time-steps into the future t, t+ 1, ..., t+T . The
continuous calibration is then carried out as follows:

1. Define priors. Posteriors of the previous model
are used to derive prior probability distributions
through the use of maximum likelihood esti-
mation (MLE) and Akaike information criterion
(AIC).

2. Form a predictive model. Replace all unknown
quantities over the time interval with their current
estimates, using data available at time t.

3. Execute. Generate samples from the posterior
distributions using the model from step 2.

4. Repeat. Continuously perform steps 1 to 3 after
every T time-steps.

The Akaike information criterion (AIC) (Equation 2)
is used to select the probability distribution that gives
the “best” fit to the data (posterior samples of the
previous model) (Burnham and Anderson, 2004). For
this study, the data is fitted to 5 different continuous
probability distributions and they include the Beta,
Gamma, Lognormal, Normal, and the Weibull distri-
bution.

AIC = −2 logL(θ|x) + 2K (2)

where θ denotes the parameters of the probability
distribution and is determined using maximum likeli-
hood estimation; X denotes the posterior samples of
the previous model; n is the number of observations
and k is the number of parameters to be estimated.
Given the posterior samples X, maximum likelihood
estimation maximizes L(p|x) over all possible θ.

Instance selection

The training data used for each calibration is created
using all of the historical data that have been col-
lected to date. Since this dataset would continue to
increase over time, it is not suitable for use within
a continuous calibration framework. In particular,
the proposed Bayesian calibration method employs a
GP model as an emulator, which has a runtime com-
plexity of O

(
N3
)

where N is the number of samples
the GP model is trained on. Therefore, instance se-
lection is applied to reduce the original dataset to a
manageable volume, leading to a significant reduction
of the computational resources that are necessary for
performing the Bayesian calibration. (Chong et al.,
2017) previously proposed selecting a representative
subset of the full dataset using a metric known as
sample quality that is based on the KullbackLeibler
divergence. However, since the sampled subset is se-
lected randomly, the resulting subset remains rela-
tively large in order to maintain high sample quality.

In this study, to keep the Bayesian calibration com-
putationally tractable within a continuous calibration
framework, a representative subset of the full dataset
is selected using the k-nearest neighbor (k-NN) algo-
rithm (Cover and Hart, 1967). The k-NN algorithm
is a non-parametric method that selects k points that
are nearest to an observation. In this study, the near-
est neighbors were determined using the Euclidean
distance. Since the Euclidean distance is sensitive to
the scale of the data (variables on a larger scale may
dominate the distance calculation), min-max normal-
ization is applied to convert the data to a [0, 1] scale.
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Figure 2: Continuous Bayesian calibration using a sliding time window. The posteriors of the previous calibrated
model is used to derive the priors for the Bayesian calibration at the current time-step (Chong et al., 2019)

Instance selection for the continuous Bayesian cali-
bration is carried out as follows. First, Xpred (out-
door dry-bulb temperature and relative humidity
with respect to our case study) for the prediction pe-
riod T is predicted. Next, the training data collected
is separated into two datasets containing only week-
day and weekend data respectively. The k-NN algo-
rithm is then used to select a representative subset
(from the weekday and the weekend datasets) that is
closest to each instance of Xpred. Independent sam-
pling from a weekday and weekend dataset was car-
ried out to ensure that both weekday and weekend
data are included in the resulting data used for the
Bayesian calibration.

Results

We evaluate the calibration performance by compar-
ing the calibrated GP model against the measured
data. For a genuine assessment of the prediction ac-
curacy using the proposed continuous Bayesian cali-
bration framework, the first six months (January to
June) of data was treated as historical data and the
seventh month (July) as a hold-out test dataset that
was not used for the calibration. A 7-day time win-
dow was used for this case study. In other words, for
the month of July, we evaluate the current model’s
prediction accuracy using hold-out observations 7-
days into the future (Fig. 2). As illustrated in Fig.
1, k-NN was used to select a representative subset as
training data from a dataset comprising all historical
data that has been collected at the time of the cal-
ibration. For instance, on July 7th, the calibration
would be carried out using training data that was se-
lected using k-NN from a dataset comprising of data
from January 1st to July 6th. Prediction accuracy is
then evaluate using hold-out observations from July
7th to July 14th. The metric used for the evaluation
of prediction accuracy of the hold-out observations is
the coefficient of variance of the root mean squared

error (CVRMSE) (eq. 3), a measure that is com-
monly used as an indication of the variation between
the values predicted by the calibrated BEM and the
observed values (ASHRAE, 2014).

CV RMSE[%] = 100×
√∑n

i=1 (yi − ŷi)2 / (n− 1)

ȳ
(3)

Fig. 3 and Fig. 4 shows the variation in CVRMSE
and posterior predictions respectively over the test
dataset using different amounts of training data (7
days, 14 days, 28 days, and 56 days). Put differently,
for each of the 7 prediction points in the 7-day time
window, we select k = 1 (7 × 1 = 7 days training
data), k = 2 (7 × 2 = 14 days training data), k = 4
(7×4 = 28 days training data), and k = 8 (7×8 = 56
days training data) nearest neighbors respectively.

It can be observed that the hold-out observed values
fall within the prediction intervals regardless of the
amount of training data (Fig. 4). However, Fig. 4
also shows that using 7, 28, and 56 days of training
data produce posterior predictions with larger ranges,
suggesting larger uncertainties than using 14 days of
training data. This is also illustrated by the distri-
bution of CVRMSE values calculated using samples
from the posterior predictions. From the box and
whisker plots (Fig. 3) for the computed CVRMSE
values, it can be observed that the median CVRMSE
using 14 days of training data lies below the inter-
quartile range (the box) with 7, 28 and 56 days of
training data, indicating that using 14 days of train-
ing data is likely to give lower CVRMSE and thus
better prediction accuracy. The box plot of 14 train-
ing data is also comparatively shorter, denoting lower
overall CVRMSE with different samples from the pos-
terior predictions. These observations are further
supported by the cumulative frequency graphs of the
CVRMSE (Fig. 3), which clearly shows that using
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Figure 3: Cumulative distribution (top) and Box and
whisker plots (bottom) showing the distribution of
CVRMSE computed using samples from the posterior
predictions generated by MCMC.

14 days of training data provides comparatively lower
CVRMSE and thus better prediction accuracy.

A possible explanation for the observed variations in
prediction accuracy is that Gaussian processes are
distributions over functions. Thus, they are very
flexible and prone to overfitting when the dataset is
small. In our case study, 7 days of training data might
be too small, resulting in lower predictive perfor-
mance as indicated by the higher median CVRMSE
as well as the larger variability in CVRMSE (Fig.
3). On the contrary, using 28 days of training data
might result in noisy inputs leading to predictions
with higher CVRMSE because of the increased un-
certainties. This trend of increased uncertainties in
the model prediction for a given data point is fur-
ther illustrated by the cumulative distribution of the
CVRMSE with 56 days of training data. The median

CVRMSE increases as the amount of training data
used for the calibration increases from 14 to 28 to 56
days (Fig. 3). Moreover, from the figure, it can be ob-
served that the 25th percentile of the CVRMSE using
56 days of training data lies above the 75th percentile
of the CVRMSE using 14 days of training data, im-
plying a difference between the groups. Therefore,
Fig. 3 provides corroborating evidence of the bias-
variance tradeoff when using Gaussian processes for
the Bayesian calibration of BEM. Using too little data
can lead to overfitting or a high-variance model. On
the contrary, using too many data points can lead
to noisy inputs and therefore increased bias in the
model. For our case study, using 14 days of training
data seems to provide a balance. It should be noted
that the maximum CVRMSE obtained using 14 days
of training data is also less than the more stringent
threshold of 15% set by ASHRAE Guideline 14 for
monthly resolution data (ASHRAE, 2014).

Fig. 5 shows the posterior predictions when only
weekday (left plot) and weekend (right plot) data
was used for the Bayesian calibration respectively.
From the figure, it can be observed that the posterior
predictions overestimate the weekend measurements
when only weekday data was used for the Bayesian
calibration and underestimates weekday measure-
ments when only weekend data was used for the
Bayesian calibration. This is expected since build-
ings tend to consume more energy during weekdays
when in operation. These results indicate that for
accurate predictions, it is necessary to include both
weekday and weekend data in the training data (step
1 in Fig. 1) used for the BEM calibration.

Conclusion

In this paper, a framework for the continuous
Bayesian calibration of building energy models was
proposed. The continuous Bayesian calibration is car-
ried out following the principals of a receding horizon,
which uses a sliding time window that moves forward
at each sampling time. A Bayesian approach is pro-
posed because it provides the flexibility to assimilate
“existing data” to the new data through the use of
priors. This is done by passing the posterior prob-
ability distributions of the previous model as prior
probability distributions into the new model.

Through an actual case study building, we show
that the proposed method is able to produce pos-
terior predictions with CVRMSE distribution (met-
ric for prediction accuracy) that fall entirely below
the error thresholds specified by ASHRAE Guide-
line 14 (ASHRAE, 2014). The CVRMSE distribution
was computed using the samples of posterior predic-
tions generated using MCMC. The study was carried
out using a 7-day sliding time window with varying
amounts of training data. Results show that Bayesian
calibration gave better prediction accuracy when 14
days of training data were used as opposed to using 7,
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28 and 56 days of training data respectively. This sug-
gests a bias-variance tradeoff when varying amounts
of training data is used to fit the Gaussian process
model. The Gaussian process model acts as an emu-
lator to aid the iterative Bayesian calibration process.
An intuitive explanation for the observed results is
that if the dataset is too small (7 days), the Gaus-
sian process model is prone to overfitting resulting in
poor generality. On the contrary, using more data
(28 and 56 days) to fit the Gaussian process model
might result in noisy inputs leading to greater uncer-
tainties in the predictions and hence larger spread in
CVRMSE distribution. Lastly, we show that includ-
ing both weekday and weekend data in the dataset
used for the Bayesian calibration is necessary for ac-
curate posterior predictions. Therefore, it is impor-
tant that we explicit sample from both weekday and
weekend data when creating subsets of the data to
keep the BEM calibration computationally tractable.
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