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a b s t r a c t 

The present study proposes a framework for the continuous Bayesian calibration of whole building en- 

ergy simulation (BES) models utilizing data from building information models (BIM) and building energy 

management systems (BEMS). The ability to import data from BIM and BEMS provides the potential to 

significantly reduce the time and effort needed for the continuous calibration of BES models. First, five 

gbXML geometric test cases were used to check the BIM to BES model translation. Translation of the test 

cases indicates good geometric agreement between the native BIM and the gbXML-based BES model. An 

actual building calibration case study (with BIM and three years of monthly electrical energy consump- 

tion data) was then used to evaluate the proposed continuous calibration method. The results suggest 

that compared to a non-continuous approach, the continuous Bayesian calibration method showed re- 

duced prediction uncertainty and improved prediction accuracy on a test dataset. The paper also presents 

information and comparison of the coefficient of variance of the root mean square error (CVRMSE) and 

the normalized mean biased error (NMBE), recommending looking at their distributions when working 

with probabilistic BES predictions. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Buildings and constructions account for 36% of global energy

onsumption and are responsible for 19% of greenhouse gas emis-

ions [1] . Based on projections, emissions from the building sec-

or could double by 2050 if we carry on business as usual. Fur-

hermore, buildings use energy throughout their life-cycle, with

he operating phase being one of the most significant (80–90%)

ontributors to a building’s overall life-cycle energy demand [2] .

herefore, it is essential that buildings are energy efficient and sus-

ainable. 

Building energy simulation (BES) is a valuable tool often used

o evaluate and identify strategies for improving building energy

fficiency and occupant comfort. Traditionally, BES tools were used

or code compliance [3,4] , as well as to evaluate different design

lternatives, and support improved building performance through

esign optimization [5,6] . However, over the past decade, BES us-

ge has been extended beyond the design phase with applications

hroughout the building’s life-cycle, including measurement and

erification (M&V) [7–9] , retrofit analysis [10,11] , fault detection
∗ Corresponding author. 
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12] , and model predictive controls [13,14] . The major difference

etween BES usage at different phases of a building’s life-cycle is

n the level of details, namely, more details are needed to validate

he energy model during later stages [15] . 

Despite the potential benefits of BES, it is often preceded by

he labor-intensive, time-consuming, and error-prone manual task

f creating an energy model, requiring inputs that include (but not

imited to) a detailed description of the building’s geometry, its

ssociated heating, ventilation, and air conditioning (HVAC) sys-

em, the quantification of various internal loads (occupancy, light-

ng, equipment loads, etc.), as well as weather conditions [15,16] .

urthermore, with the emergence of the Internet of Things (IoT),

here is an opportunity to create a digital twin of a building that

ontinuously learns and updates itself using information from var-

ous sources. Information needed for BES could include data from

uilding information models (BIM), real-time observations from

he building energy management system (BEMS), as well as as-

umptions from codes and standards. 

.1. BIM to BES 

BIM is a process for creating and managing information on a

uilding. The resulting building information model that is created

https://doi.org/10.1016/j.enbuild.2019.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.04.017&domain=pdf
mailto:adrian.chong@nus.edu.sg
https://doi.org/10.1016/j.enbuild.2019.04.017
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case study. 
represents the building and acts as a database of coordinated in-

formation [17] . BIM is intended to serve as a shared knowledge

resource for information about the building, forming a reliable ba-

sis for decision making. This provides an opportunity to leverage

data or information using BIM, potentially streamlining several key

steps in the traditional manual process that is used to create a BES

model. 

The Industry Foundation Class (IFC) [18] and the Green Build-

ing eXtensible Markup Language (gbXML) [19] are two open stan-

dard data schema commonly used for information exchange from

BIM to BES [20] . Today, both IFC and gbXML data formats are sup-

ported by many BIM authoring tools such as Revit and ArchiCAD.

However, accurate modeling of as-built condition still remains a

challenge in the translation of BIM to BES [21] . To close this gap,

both fully automated and semi-automated processes and frame-

works have been proposed to aid the translation process. Several

studies proposed methods to provide a more accurate representa-

tion of the building’s thermal properties, including the use of ther-

mographic images to infer material thermal properties [22,23] , the

mapping of actual thermal properties inferred from collections of

thermal images and simple environmental measurements [24] , as

well as the manual extension of material properties by leveraging

on published libraries of construction and material data [25] . Man-

ual calibration [26] and calibration using optimization [27] have

also been applied to BIM-based BES. To address issues of inconsis-

tencies between design and operation, Dong et al. [12] presented

an infrastructure to integrate building energy management system

data with BIM-based BES for fault detection and diagnostics. 

Despite these advances in automation, model discrepancies and

uncertainties still exist because it is impractical and often impossi-

ble to gather complete information about the actual conditions of

the building. Additionally, it has been shown that assuming default

values in these instances may result in large model uncertainties

and possibly leading to wrong conclusions [28] . 

1.2. Uncertainties related to BIM-based BES 

Inputs to BES are often obtained from multiple sources such as

drawings, specifications, site visits, or any other sources of infor-

mation that might be available. Throughout a building’s life-cycle,

the BES model often needs to be updated to provide an accurate

digital representation of the built asset. However, creating and up-

dating the model is a time-consuming process that is filled with

uncertainties. Time-consuming because each update typically in-

volves manual translation as well as tedious line and surface draw-

ing if the change is geometry related. Uncertain because complete

information is often not available and the modeler often needs to

make assumptions about the missing parts. As a result, BES models

are often prone to significant amounts of specification and model-

ing uncertainties [29] . 

Specification uncertainty refers to uncertainty arising from in-

complete or inaccurate modeling that results from a lack of infor-

mation on the exact properties of the building. For instance, defin-

ing lighting and plug loads require either building use schedules

and electrical design data or hourly measurements from electri-

cal sub-meters, which are typically not available and thus often

estimated or assumed. Similarly, construction layers and material

properties about different building elements are usually estimated

if the information is not available in any form. In addition, ma-

terial properties even if they are known, are subject to a certain

degree of heterogeneity. Modeling uncertainty refers to the uncer-

tainty that arises from simplifications and assumptions introduced

during the development of the model. These simplifications and

assumptions could be explicit to the modeler (e.g., defining ther-

mal zones is a subjective process that depends on the modeler’s

knowledge, experience, and understanding of the building) or im-
licit and hidden within the tool (simplifications made by the sim-

lation engine). Models are representations of the actual physical

uilding systems, and no single model is perfect and beyond dis-

ute even if the best-fitting values of all the inputs to the model

re known [30] . Therefore, it is integral that uncertainty analysis is

 part of the overall continuous calibration process. 

.3. BES calibration 

BES calibration is a necessary step in the overall process to in-

rease model confidence and reliability if the model is to be used

eyond the design stage in applications such as retrofit analysis,

ault detection, and building controls. This is because actual energy

onsumption can deviate substantially from modeled predictions

ven when the model has been updated with data from as-built

rawings and specifications [31,32] . However, the calibration of

IM-based BES is often neglected or performed manually. Manual

alibration is a subjective process that typically requires a deep un-

erstanding of the building’s systems and its operation, making the

alibration process subjective and hard to reproduce. Furthermore,

anual methods are time-consuming and labor-intensive due to its

terative nature. 

Over the years, many BES calibration methods have been pro-

osed with varying levels of automation and requiring different

evels of expertise [33–35] . Among various calibration methods,

ayesian calibration has been increasingly applied to BES because

f its ability to naturally incorporate expert knowledge (through

he specification of prior probabilities) in the calibration process

36] . Bayesian calibration was first applied to BES for retrofit anal-

sis [10] with an emphasis on the inclusion of model discrepancy

sing the mathematical formulation developed by Kennedy and

’Hagan [30] . A Gaussian process (GP) model is often used as an

mulator during the iterative Bayesian calibration process because

f its flexibility and accuracy. The use of GP models have been

ound to provide the best accuracy but with the highest computa-

ional burden as compared to other commonly used meta-models

37] . To alleviate the high computation cost of Bayesian calibra-

ion, several methods have been proposed, including the use of

inear regression models in place of GP models [38,39] , Hamilto-

ian Monte Carlo (HMC) for more efficient Markov Chain Monte

arlo sampling [40–42] , and using a representative subset of the

ata for the calibration [40] . 

Bayesian calibration of BES is typically performed after the

easurement period, using the data collected in a single calibra-

ion exercise. However, the energy model can become out of date

f there are changes to the building’s operation (e.g., changes to

pace utilization or type of lighting fixtures). With the prolifera-

ion of the Internet of Things (IoT) technology, it is becoming in-

reasingly easier to obtain a building’s operating data. Combined

ith the ability to translate data from BIM to BES, this provides an

pportunity to continuously collect and use both BIM and energy

ata for the calibration of energy models. 

.4. Objectives 

The aim of the present study is the development of a contin-

ous calibration framework that utilizes different sources of infor-

ation while accounting for parameter and model uncertainties.

o achieve this, the objectives of this study include: 

1. Development of a framework for continuous Bayesian calibra-

tion; 

2. Implementing an open source, object-oriented BIM to BES

translator; 

3. Demonstrate the use of BIM and energy data for the continuous

Bayesian calibration, using an actual building as a calibration
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Fig. 1. Overview of proposed framework for continuous Bayesian calibration using data from BIM and BEMS. 
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. Method 

The proposed framework for this study consists of two main

arts ( Fig. 1 ): 

(A) BIM to BES translation; and 

(B) Continuous Bayesian calibration. 

Part A involves using an object-oriented approach to populate

he BIM exported gbXML with information that includes construc-

ion layers and material properties, internal loads (lighting, plug,

nd occupancy), as well as HVAC systems information. This pro-

ess eliminates time-consuming effort s needed to create a ready-

o-simulate EnergyPlus input data file (IDF) because essential in-

ormation needed to generate a BES model is often missing from a

IM exported gbXML [43] . The updated gbXML-based BIM is then

ranslated into an EnergyPlus IDF. Part B involves the continuous

pplication of Bayesian calibration using the BIM-based BES (Ener-

yPlus IDF) created in part A and energy data from the BEMS. As

new data” arrives, the “existing observations” are not discarded

ut instead assimilated to the model through the use of priors. 

.1. BIM to BES translation 1 

An object-oriented approach for the BIM to BES translation

as adopted in this study. The translator was built with two core
1 Source code available at https://github.com/weilixu/gbEplus . 

t  

g  
odules: the gbXML-IDF module and the IDDParser module

 Fig. 2 ). The gbXML-IDF module processes the data from the BIM

xported gbXML and translates them into an internal data struc-

ure. While translating, the gbXML-IDD module is used to contin-

ously validate the translated data to ensure its validity with En-

rgyPlus. This validation was carried out based on the EnergyPlus

nput data dictionary (IDD), which provides the syntax and data

odel for each EnergyPlus input object [16] . 

As illustrated in Fig. 1 , the gbXML-IDF module processes

he BIM exported gbXML in a component-based order from con-

truction layers and material properties to internal loads (light-

ng, plug, and occupancy) to the HVAC systems and controls. At

ach component, a two layer validation would be performed by

he IDDParser module. First, a value validation ensures that the

apped data has the correct data type (alpha or numeric), data

ange (minimum and maximum values), and references (list of

odel inputs that references the object). This layer of validation

s necessary to prevent severe errors that could result in simula-

ion failure. Second, a format validation restructures the data into

nergyPlus object-based key-value pair data structure. This layer of

alidation ensures that the simulation engine understands the data

eing parsed. 

During the data mapping process, the gbXML-IDF module uses

 plug-in interface to provide a gateway for importing data into

he gbXML during run-time. Similar to most of the application pro-

ramming interfaces (API), the plug-in interface provides methods

https://github.com/weilixu/gbEplus
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Fig. 2. gbXML-EnergyPlus translator. 

Fig. 3. Logical rules for generating inputs to update the gbXML-based BIM that would subsequently be used to create the BES model. 
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accessing the translator so that customized datasets can be pack-

aged and plugged into the translation process. Since the plug-in

interface is method-driven, it does not require these datasets to

be formatted using a predefined schema. Through these methods,

the translator is able to receive data from different data sources,

providing flexibility in the BIM to BES translation. Put differently,

users can interface with the translation by using the methods of

the plug-in interface to specify inputs from various data sources

and with different priorities. 

In this study, inputs to each component of the BES model

were generated based on the following order using the plug-in

interface ( Fig. 3 ): (1) gbXML-based BIM, (2) user-defined data,

and (3) baseline data. In other words, for each EnergyPlus ob-

ject, inputs would be generated from the gbXML-based BIM first.
he system would then check if any user-defined data has been

rovided. If the gbXML does not contain the data and no user-

efined data has been provided, the inputs would be generated us-

ng information from standards and references. The suggested data

rioritization was meant to emulate an energy modeler’s work-

ow. Currently, a full set of baseline data (including construction

ayers, material properties, lighting requirements, outdoor air re-

uirements, and HVAC systems) from ASHRAE Standard 90.1 Ap-

endix G [44] and the Singapore Building and Construction Author-

ty (BCA) Green Mark Scheme [3] has been built into the “Stan-

ards and References” database. With such a framework ( Fig. 3 ),

he translator would not require the BIM to contain all informa-

ion before a BES model that is ready for simulation could be

enerated. 
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Fig. 4. Framework for continuous Bayesian calibration. The BES model is re-calibrated after every time period T with priors defined based on the posterior samples of the 

previously “calibrated” model. 
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2 Source code available at https://github.com/adChong/bc-stan . 
.2. Continuous Bayesian calibration 

.2.1. Continuous calibration 

Continuous Bayesian calibration is used to improve and main-

ain confidence in the BIM translated BES. The continuous calibra-

ion is carried out following the principles of a receding horizon

r model predictive control [45] . Instead of performing the calibra-

ion once, the BES model is continuously calibrated after each time

nterval T ( Fig. 4 ). The smaller time window also decomposes the

alibration process into smaller, computationally tractable calibra-

ion problems. 

A Bayesian approach fits nicely into a continuous-time cali-

ration framework because it provides a flexible framework for

ynamically updating model parameters and their uncertainties

hile taking into account past information in the form of pri-

rs. The continuous Bayesian updating is based on Bayes’ Theo-

em ( Eq. (1) ), and the objective is to derive the posterior probabil-

ty distribution of the calibration parameters given some measured

ata and prior knowledge of the calibration parameters. 

p(t | y ) ∝ p(y | t) × p(t) (1)

During re-calibration, the posterior estimates of the previously

alibrated BES model will be used to derive the prior probabil-

ty distributions. These priors combined with recent measurements

ill then be used to derive the posterior probability estimates for

he updating or re-calibration of the BES model. This is with the

xception of the first model since no previously calibrated model

xists and the prior probability distributions will be based on the

ubjective belief of the modeler, which is typically derived from

ultiple sources of information such as drawings, specifications,

ite surveys and audits, standards and references. 

The continuous Bayesian calibration framework works as fol-

ows ( Fig. 4 ). At time t , we consider a time interval extending T

ime-steps into the future: t, t + 1 , . . . , t + T . We then carry out

he following steps: 

1. Define priors. Posteriors of the previous model are used to de-

rive prior probability distributions through the use of maximum
likelihood estimation (MLE) and Akaike information criterion

(AIC). 

2. Form a predictive model. Replace all unknown quantities over

the time interval with their current estimates, using data avail-

able at time t. 

3. Execute. Generate samples from the posterior distributions us-

ing the model from step 2. 

4. Repeat. Continuously perform steps 1–3 after every T time-

steps. 

We use the Akaike information criterion (AIC) ( Eq. (2) ) to se-

ect the probability distribution that gives the “best” fit to the data

posterior samples of the previous model) [46] . For this study, the

ata is fitted to 5 different continuous probability distributions

nd they include the Beta, Gamma, Lognormal, Normal, and the

eibull distribution. 

IC = −2 log L (θ | x ) + 2 k (2)

here θ denotes the parameters of the probability distribution and

s determined using maximum likelihood estimation; x denotes the

osterior samples of the previous model and k is the number of

arameters to be estimated. Given the posterior samples x , maxi-

um likelihood estimation maximizes L (θ | x ) over all possible θ . 

.2.2. Kennedy and O’Hagan formulation 2 

Bayesian calibration is carried out using the formulation pro-

osed by Kennedy and O’Hagan [30] . The formulation explicitly

odels three types of uncertainties in the BES model ( Eq. (3) ): 

1. parameter uncertainty; 

2. model inadequacy or the discrepancy between the energy

model and the true building behavior; and 

3. Observation errors. 

y (x ) = η(x, t) + δ(x ) + ε(x ) (3)

here, y ( x ) is the observed field measurement, η( x, t ) is the output

f the BES given observable inputs x and calibration parameters t,

( x ) is the model inadequacy, and ε( x ) is the observation errors. 

https://github.com/adChong/bc-stan
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Table 1 

Comparison of 3D view for revit model as compared to BIM-based EnergyPlus 

model. 

Native BIM (Revit) Energy model (EnergyPlus) 

Test case 1 

Test case 2 

Test case 3 

Test case 4 

Test case 5 

Actual case study 
Since the iterative calibration process can be computationally

intensive, a Gaussian process (GP) model is used to emulate the

energy model. We use a GP model because of its flexibility and

accuracy [37,47] . Measured data is combined with simulation data

using the approach proposed by Hidgon et al. [47] . Due to the com-

plexity of the BES, the posterior distributions cannot be derived an-

alytically and Markov chain Monte Carlo (MCMC) is used to sample

from the posterior probability distributions. As suggested by Chong

et al. [40] , we use Hamiltonian Monte Carlo (HMC) for more effi-

cient MCMC sampling and better convergence [41,42] . Details and

source code for the Bayesian calibration method employed in this

study can be found in Chong and Menberg [48] . 

2.3. Calibration performance 

The performance of the calibrated BES models was analyzed

based on their predictive performance. Following ASHRAE Guide-

line 14 [8] , the two indices used for evaluating predictive perfor-

mance are the coefficient of variance of the root mean square error

(CVRMSE) ( Eq. (4) ) and the normalized mean biased error (NMBE)

( Eq. (5) ): 

V RMSE[%] = 100 ×
√ ∑ n 

i =1 (y i − ˆ y i ) 2 / (n − 1) 

ȳ 
(4)

NMBE[%] = 100 ×
∑ n 

i =1 (y i − ˆ y i ) 

(n − 1) × ȳ 
(5)

where y i = observed value at hour i , ˆ y i = predicted value at hour i ,

ȳ = mean energy consumption of n observations; and n = number

data points. 

Given that Bayesian calibration produces probabilistic predic-

tions, we analyze the distributions of CVRMSE and NMBE com-

puted using the MCMC samples from the posterior predictions. We

also analyze the CVRMSE and NMBE computed using the mean

posterior predictions: 

ˆ y i = 

1 

m 

m ∑ 

j=1 

ˆ y i, j (6)

where m is the number of MCMC samples in the posterior predic-

tions of ˆ y i in Eqs. (4) and (5) above. 

Another important consideration in MCMC simulations and

thus Bayesian calibration is that of convergence. Since a contin-

uous calibration approach was adopted, newly calibrated models

would continue to be generated over time. Convergence for ev-

ery calibrated model is assessed by checking that the Gelman–

Rubin statistics ˆ R (ratio of between-chain variance to within-

chain variance) for the posterior samples are within 1 ± 0.1

[4 8,4 9] . 

3. Geometric test cases and calibration case study 

Five geometric test cases and one actual building calibration

case study were used in this study. The five geometric benchmark

test-cases were created based on ASHRAE Research Project 1468

[50] , and are used to ensure compliance of the BIM to BES trans-

lation with gbXML’s standards for geometry accuracy and infor-

mation integrity [51] . The five test cases are used to ensure that

the requirements for geometric data exchange from BIM to BES are

met, while the calibration case study is used to demonstrate and

evaluate the application of the proposed framework (using BIM

and energy data for continuous Bayesian calibration). Since the

purpose of the geometric test cases is to validate geometry data

mapping, their BIM was created to contain only geometric infor-

mation. The five test cases and one case study are summarized as

follows ( Table 1 ): 
1. Five geometric benchmark gbXML test-cases: 

• Test case 1: Double height space sharing an adjacent interior

wall with four single height spaces. 

• Test case 2: One of the spaces shares an adjacent interior

wall with three identical single height spaces. 

• Test case 3: A Simple two-zone model with complex sloping

roof 

• Test case 4: Large space that consists of a sloped slap on

grade and an unusual roof geometry 

• Test case 5: This test case is a slight variant of test case 2

and includes an additional second story volume. 

2. One actual building calibration case study: 

• The case study building is an office building located on

the campus of the National University ofSing apore (NUS) in

Singapore. The building consists of 3 blocks each 3-story

high with a total gross floor area of 5445 m 

2 . The air-

conditioning and mechanical ventilation (ACMV) system is

a variable air volume system served by a central district

cooling system. Given Singapore’s tropical climate, no heat-

ing is required and the ACMV system is required to oper-

ate throughout the year to maintain thermal comfort within

the building. The BIM was created using Revit and contains

both the actual construction layers and material properties.

3 years of electrical energy consumption data at a monthly

resolution from 1 January 2014 to 31 December 2016 were

collected and used to evaluate the proposed framework as

illustrated in Fig. 1 . The weather file used for calibration is

the Actual Meteorological Year (AMY) weather data from the

Singapore Changi airport weather station (WMO #486980). 

. Results 

.1. BIM to BES 

Table 1 provides a 3D visual comparison of the model in the

ative BIM (Revit) and the BES (EnergyPlus). The images show that
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Table 2 

Weighted absolute percentage error (WAPE) for gross wall area, window opening area, and zone volume of the 

BIM translated BES. 

Gross wall area [%] Window opening area [%] Roof area [%] Zone volume [%] 

Test case 1 0.004 0.015 0.001 0.0 0 0 

Test case 2 0.0146 NA ∗ 0.0 0 0 0.0 0 0 

Test case 3 3.720 0.018 0.002 0.001 

Test case 4 1.716 0.011 0.001 0.0 0 0 

Test case 5 0.907 NA ∗ 0.0 0 0 0.0 0 0 

Actual case study 0.309 1.549 0.035 0.0 0 0 

∗ Test cases 2 and 5 have no windows. 
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he translator was able to correctly identify the correct number

f spaces/zones. Table 2 presents the weighted absolute percent-

ge error (WAPE) ( Eq. (7) ) for the gross wall area, window opening

rea, roof area and zone volumes for the BIM-based BES in Energy-

lus as compared to the original native BIM in Revit. WAPE is used

s a measure of the BIM to BES translation accuracy in percentage

erms and is calculated as the sum of absolute deviation divided

y the total area or volume. Therefore, the lower the WAPE, the

etter the performance of the translation. For instance, a WAPE of

% in gross wall area can be interpreted as a 5% deviation in wall

urface area between the BIM and the translated BES model. 

AP E[%] = 100 ·
∑ n 

i =1 | A i − F i | ∑ n 
i =1 A i 

(7) 

here A i is the area of the surface or volume of the zone in the

IM, and F i is the area of the surface or volume of the zone in the

ES. 

WAPE values for all test cases (including the actual case study)

re very small ( ≤ 1%) for most surface areas and all zone vol-

mes. This is with the exception of the gross wall surface area of

est case 3 ( WAP E = 3 . 720% ) and test case 4 ( WAP E = 1 . 716% ), as

ell as the window opening surface area for the actual case study

 WAP E = 1 . 549% ). A more detailed analysis revealed that the dif-

erence in gross wall surface area of test cases 3 and 4 is due to

he roofs tilting at an angle. This is because walls in the BIM are

ranslated as surfaces in the BES model. During the translation, the

nner surface of the wall object is used to represent this surface in

he BES model, resulting in walls with a slightly larger wall area

ince the wall would be extended to the roof ( Fig. 5 ). Nonetheless,

he BIM translated BES model maintains a correct thermal view

ince the zone volume remains the same. It should be noted that

his error is due to translation from the native BIM to gbXML. This

as verified by computing the wall surface areas of the model in

he BIM exported gbXML and comparing it with their counterparts

n the translated BES model. The WAPE was also found to be equal

o 0.0 0 0% in both test cases 3 and 4 when the comparison was

ade between gbXML and BES instead of between native BIM and

ES. 

The slightly larger WAPE (1.549%) for the window opening area

f the actual case study is because windows are modeled as cur-

ain wall objects in Revit. However, when exported to gbXML, the

rames of these curtain wall objects are not exported resulting in a

iscrepancy between the native BIM and the BIM exported gbXML.

 further check also showed that the WAPE between the BIM ex-

orted gbXML and the translated BES to be equal to 0.0 0 0%. 

.2. Parameter screening 

Before conducting the continuous BES calibration, Morris

ethod [52] was used to screen-out non-influential parameters

or the actual case study. Twenty-eight t 1 , t 2 , . . . , t 28 parameters

ere initially identified as uncertain after the BIM to BES trans-

ation. The twenty-eight parameters include parameters related to

nvelope thermal properties, internal loads, and the HVAC system.
able A.4 lists the twenty-eight parameters that were considered

n the sensitivity analysis as well as the initial value and range

ssigned to each parameter. The initial values of each parameter

ere assigned based on measured data, as-built drawings, specifi-

ations, and expert opinion. 

Fig. 6 shows the results of the sensitivity analysis using the

odified mean μ∗ and standard deviation σ [53] . From Fig. 6 , five

arameters (equipment power density t 27 , lighting power density

 26 , AHU fan pressure rise t 28 , AHU fan efficiency t 21 , cooling set-

oint t 20 ) were selected and subsequently used for the continuous

ayesian calibration. Non-influential parameters were fixed at their

nitial values ( Table A.4 ) to mitigate issues of non-identifiability

uring the BES model calibration [48] . 

.3. Calibrated simulation performance (actual calibration case study)

.3.1. Prior probability specification 

In the proposed continuous Bayesian calibration method, priors

or the calibration parameters would be derived based on the cor-

esponding posteriors from the previously calibrated model. How-

ver, the first BES to be calibrated does not have a previous model

hat can be used for the derivation of the priors. Therefore, the

ollowing choices for the priors were made to initialize the contin-

ous Bayesian calibration process: 

• Equipment power density [ W / m 

2 ] ∼ U(2 , 15) 

• Lighting power density [ W / m 

2 ] ∼ U(2 , 12) 

• Cooling setpoint temperature [ ◦C ] ∼ U(19 , 26) 

• AHU fan efficiency [ −] ∼ U(0 . 2 , 0 . 9) 

• AHU fan pressure rise [ m 

3 / s ] ∼ U(10 0 , 50 0) 

These calibration parameters were assigned flat or uniform

rior probability distributions to represent the subjective belief

hat there is insufficient prior knowledge to assign specific infor-

ative priors. The upper and lower bounds were defined using a

ider range of possible values than expected to avoid eliminating

ossible parameter values based on subjective beliefs apriori [48] . 

.3.2. Training and testing data 

In this study, prediction accuracy was evaluated using hold-out

esting data that was not used for the calibration. For the non-

ontinuous calibration, of the 3 years of monthly electricity en-

rgy consumption data used for this case study, Bayesian calibra-

ion was carried out once using the first 12 months of data ( Fig. 7 ).

he calibrated BES model is then used to obtain posterior predic-

ions over the following 24 months (hold-out testing data). 

For the continuous calibration, prediction accuracy was evalu-

ted by treating future data that was not used for the calibration

f the current model as the hold-out testing data. Fig. 7 illustrates

his process within the context of this case study. As shown in the

gure, the BES model is re-calibrated every T = 1 month using the

ost recent 12 months of historical data. This means that for each

alibrated model, the testing data used to evaluate its prediction

ccuracy is the most imminent T = 1 month of future data that

as not been used for its calibration. 
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Fig. 5. Differences in wall area in BIM to BES translation because the wall is translated as a surface in the BES model, resulting in the wall being slightly taller. Top: Cross 

section of test case 3; Bottom: Cross section of test case 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

w  

r  

t  

fi  

n

 

m  

m  

s  

p  

t  

p  

l  

t  

C  

w  

(  

p  

o

4.3.3. Prediction accuracy 

Fig. 8 shows the resulting posterior predictions over the train-

ing data (top plot) and the testing data using both continuous and

non-continuous Bayesian calibration (lower plot). A quick glance at

Fig. 8 shows a significant difference between predictions over the

training data (top plot) and the testing data (bottom plot). Predic-

tions over the training data have significantly lower posterior un-

certainty and show an exceptional match between the predictions

and the measured values. 

Predictions over the test dataset using non-continuous Bayesian

calibration shows larger prediction uncertainties (yellow box-plots

in Fig. 8 ) as compared to predictions with continuous Bayesian cal-

ibration (blue box-plots in Fig. 8 ). Additionally, non-continuous cal-

ibration tends to underestimate actual values, with most measure-

ments falling above the third quartile of the box-plots. On the con-

trary, bias in the predictions is significantly reduced when contin-

uous Bayesian calibration is used, with most measurements falling

within the inter-quartile range of the box plots. This observation

of reduced bias can be attributed to the use of more recent data

in continuous Bayesian calibration because the model is updated
r re-calibrated every T = 1 month, keeping the model up-to-date

ith the latest information about the building’s operation. These

esults ( Fig. 8 ) suggest a significant difference in posterior uncer-

ainty when using training or testing data, and a better overall

t and lower bias with continuous Bayesian calibration relative to

on-continuous Bayesian calibration. 

We further evaluate the proposed continuous calibration

ethod using varying amounts of historical data (12 months, 6

onths and 1 month) to calibrate or train the model. Table 3

hows the CVRMSE and NMBE computed using the mean posterior

redictions ( Eq. (6) ) while Fig. 9 shows their corresponding dis-

ributions (computed using the MCMC samples from the posterior

redictions). Table 3 shows that when we calibrate the model with

ess training data, CVRMSE decreases. On the contrary, Fig. 9 shows

hat using 6 months of training data gives the best performance.

omparing Table 3 and Fig. 9 also shows that CVRMSE computed

ith the mean posterior predictions tends to be underestimated

i.e., accuracy is overestimated). Therefore, given probabilistic out-

uts, the analysis should be carried out on the whole distribution

f CVRMSE and NMBE. 
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Fig. 6. Graphical plot of sensitive measures μ∗ and σ . The closer the parameters are to the upper right the more influential the parameter. 

Fig. 7. Partitioning of the training and hold-out testing data for the non-continuous and continuous calibration. 

Table 3 

CVRMSE and NMBE over testing data computed using mean value of the posterior predictions. 

Metric Predictions over Predictions over testing data 

Training data Non-continuous Continuous Continuous Continuous 

(training = 12 months) (training = 12 months) (training = 6 months) (training = 1 month) 

CVMRSE [%] 1.04 29.78 10.12 9.85 7.25 

NMBE [%] −0.00 −28.41 −2.78 0.52 2.33 
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Fig. 8. Box and whisker plots showing posterior predictions over training data (top); and over testing data using non-continuous and continuous Bayesian calibration 

(bottom). 
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An examination of the CVRMSE in Fig. 9 reveals that the 75th

percentile using 6 months of training data is lower than the 25th

percentile using 1 month of training data, indicating with confi-

dence that CVRMSE is lower with 6 months data. A feasible expla-

nation is that as more data points are added, the mean function

of the Gaussian process model used to calibrate the BES model

would adjust itself to pass through these points, leading to lower

posterior uncertainty closer to the observations [54] . Consequently,

larger posterior uncertainties are expected with a smaller training

dataset since there is a higher chance that the testing data is differ-

ent or far away from the observations used to train the GP model. 

However, it can be observed in Fig. 9 that using 12 months of

data to train the model led to an increase in median CVRMSE and

absolute NMBE, as well as a higher variability in both CVRMSE and

NMBE. This is because the 6 months of training data might provide

a better representation of the future one month of electricity con-

sumption that we are predicting. Using 12 months of data for the

calibration might result in noisy inputs and the resulting quality

of the estimated GP model suffers due to the increased uncertain-

ties in the training data since the 12 months of data might contain

information that might not be representative of the current build-
ng’s operation. Additionally, the present building case study is lo-

ated in Singapore, which is characterized by a hot and humid cli-

ate with uniform temperature and high humidity throughout the

ear. Therefore, the absence of seasonal variation might be another

eason for 6 months of training data having better CVRMSE and

MBE performance. Nonetheless, within the context of this case

tudy, we can conclude that 6 months of training data should be

sed for the continuous Bayesian calibration. 

.3.4. Parameter posterior uncertainty 

The posterior distributions of the calibration parameters over

ime is shown in Fig. 10 . Going from left to right, the figure shows

he posterior distributions from the initial BES model that was cal-

brated to the posterior distributions of the BES model that was

ontinuously re-calibrated after 6, 12, 18 and 24 months respec-

ively. 

Visually, it can be observed that there is a significant reduc-

ion in posterior uncertainty in all five calibration parameters over

ime. Quantitatively, the reduction in posterior uncertainty can also

e observed from the decreasing standard deviation over time

 Fig. 10 ). The reduction in posterior uncertainties can be explained
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Fig. 9. Box and whisker plots showing the distribution of CVRMSE (top) and NMBE (bottom) computed using samples from the posterior predictions generated by MCMC. 

Fig. 10. Evolution of posterior distribution of calibration parameters with time using 6 months of training data for the continuous Bayesian calibration. The x -axis shows the 

posterior distribution of the calibration parameters as the BES model is calibrated or re-calibrated within the proposed continuous Bayesian calibration framework. 
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y the specification of more informative priors over time. More in-

ormative priors were specified as the model is re-calibrated be-

ause trends in the measured data remain fairly consistent. This,

n turn, leads to an increase in model confidence as more data

r information telling the same thing gets integrated into the

odel. 
. Discussion 

Firstly, results of the geometric conversion (using the 5 geo-

etric benchmark test cases) indicate good agreement between

he native BIM and the BES model and that errors were due to

iscrepancies between the native BIM and the exported gbXML
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rather than discrepancies between the exported gbXML and the

BES. These findings suggest that more has to be done to improve

the interoperability between BIM authoring tools and open data

standard data schemas such as gbXML. The development of well-

established guidelines and BIM integration workflow for energy

modeling would also alleviate time-consuming effort s needed to

adjust and configure the native-BIM so that it is suitable for ex-

port to an open data BIM schema. 

Secondly, through an actual building case study, this study

showed that compared to non-continuous Bayesian calibration, the

proposed continuous Bayesian calibration method provides bet-

ter accuracy with reduced uncertainty in the resulting posterior

predictions and calibration parameters. This is because the pro-

posed method continuously updates the model with more recent

data that might be more representative of the building’s operation.

Through this study, it was also demonstrated that small amounts

of training data may result in large uncertainty in the posterior

predictions due to lack of observations at similar conditions. On

the contrary, large amounts of training data might lead to noisy

inputs and reduced accuracy due to increased uncertainties in the

training data. In the present case study, six months of training data

were found to provide the best fit and the lowest bias with the test

dataset. The limitations of the present study naturally include the

use of a case study building that is located in Singapore, which is

characterized by a hot and humid climate with uniform tempera-

ture and high humidity throughout the year. Therefore, it may not

generalize to climates that experience annual seasonal variability.

To generalize its applicability, future research is needed to test the

proposed continuous Bayesian calibration framework to case study

buildings located in temperate climates. Additionally, the current

study uses monthly calibration data making it difficult to assess if

the model is accurately representing the real behavior of the build-

ing at smaller time intervals. In a detailed calibration of an office

building located in Ireland, it was highlighted that it is possible

for a calibrated model to meet the most stringent monthly error

criteria without accurately representing the building at an hourly

interval [32] . However, data resolution should also depend on the

aim of the simulation because increasing the size of the dataset

increases the cost 3 of the calibration. Ideally, the calibrated model

should be of the lowest complexity while preserving its validity

with respect to the intended purpose of the simulation [55] . There-

fore, future work includes an investigation on the amount of data

and model fidelity needed to achieve the intended purpose of a

calibrated BES model. 

Lastly, it was demonstrated in this study that the uncertainty

and accuracy of the posterior predictions on the training and

testing data can be significantly different. Using training data to

evaluate calibration performance might instill false confidence in

the model’s predictive performance on unobserved data. Currently,

building energy models are considered “calibrated” when they

meet the CVRMSE and NMBE threshold specified by standards [7–

9] . The thresholds set out vary depending on whether the models

are calibrated with monthly or hourly data but there are no re-

quirements for the use of a test dataset (data that was not used

for the calibration). However, in most applications, what we are

interested in is not modeling the structure in the training data to

achieve high prediction accuracy on historical data. In contrast, the

purpose of calibration is typically to produce a BES model that is

representative of actual building performance. Therefore, the em-

phasis of calibration should be on the generalization of the model

and its ability to meet the aims of the simulation. In addition, pro-

visions for CVRMSE and NMBE thresholds stipulated in ASHRAE
3 large dataset requires more processing and are more expensive to acquire. 
uideline 14 [8] remains designed for use with deterministic pre-

ictions. Although the most recent version of ASHRAE Guideline

4 [8] includes new provisions to account for uncertainty, they

ere limited to savings uncertainty. To overcome this, CVRMSE and

MBE are typically computed using the mean value of each time-

tep’s prediction [10,37,40] . We showed that this may overestimate

rediction accuracy and propose looking at their distributions in-

tead. In this study, this was done through the use of box-plots

o compare the distributions of CVRMSE and NMBE. Alternatively,

ristensen et al. [56] used mean ± 95% confidence interval to com-

are CVRMSE and NMBE. In another study, the continuous rank

robability score (CRPS) [57] was employed as a test statistic for

he evaluation of the calibration performance of models with un-

ertainty [38] . 

. Conclusion 

The present study proposed a framework for the continuous-

ime Bayesian calibration of building energy simulation (BES) mod-

ls using data from building information models (BIM), as well

s energy data from the building energy management system

BEMS). To extract useful information from a BIM, a BIM to “ready-

o-simulate” BES framework was proposed by integrating user-

efined information and data from standards and references into

he translation process. The proposed continuous Bayesian calibra-

ion method extends Kennedy and O’Hagan’s [30] Bayesian cali-

ration approach into a continuous calibration framework by in-

egrating the principles of a receding horizon or model predictive

ontrol. We use a Bayesian approach because it provides a flexi-

le framework to dynamically update the energy model while ac-

ounting for past information in the form of priors. Prior distribu-

ions used for re-calibrating the model are defined using the pos-

erior estimates from the previously calibrated model. Combined

ith recent measurements these priors will be used for the re-

alibration. 

To check for compliance when mapping geometry data from

IM to BES, five geometric test cases from gbXML [51] were used

o test the translation. The test cases showed that discrepancies

n the BIM to BEM translation were primarily caused by exporting

rom the native BIM to gbXML, suggesting a need for the develop-

ent of well-established guidelines and BIM integration workflow

or energy modeling. 

Through an actual building calibration case study, its BIM

nd three years of its monthly electrical energy consumption,

e showed that the proposed framework could maintain predic-

ion accuracy while reducing parameter posterior uncertainties.

e also propose evaluating prediction performance using a hold-

ut test dataset for better generality and looking at whole distri-

utions of CVRMSE and NMBE when working with probabilistic

redictions 
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ppendix A. Details of uncertain parameters 

Table A.4 

List of uncertain parameters and their range. 

Model parameter 

Envelope thermal properties: 

Concrete conductivity [ W / m − k ] 

Concrete density [ k g / m 

3 ] 

Concrete specific heat [ J / k g − K ] 

Rockwool conductivity [ W / m − k ] 

Rockwool density [ k g / m 

3 ] 

Rockwool specific heat [ J / kg − K ] 

Gypsum board conductivity [ W / m − k ] 

Gypsum board density [ k g / m 

3 ] 

Gypsum board specific heat [ J / k g − K ] 

Precast concrete conductivity [ W / m − k ] 

Precast concrete density [ k g / m 

3 ] 

Precast concrete specific heat [ J / k g − K ] 

Window U- value [ W / m 

2 − k ] 

Window shading coefficient [ −] 

Hollow core slab (roof) conductivity [ W / m −
Hollow core slab (roof) density [ k g / m 

3 ] 

Hollow core slab (roof) specific heat [ J / kg −
Internal loads: 

People density [ m 

2 / person ] 

People activity level [ W ] 

Light power density [ W / m 

2 ] 

Light fraction radiant [ −] 

Equipment power density [ W / m 

2 ] 

Equipment fraction radiant [ −] 

Infiltration rate [ ACH ] 

HVAC: 

Cooling setpoint [ ◦C ] 

Outdoor air flow [ m 

3 / s − person ] 

AHU fan efficiency [–] 

AHU fan pressure rise [ m 

3 / s ] 
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