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A B S T R A C T

Occupancy is a significant area of interest within the field of building performance simulation. Through
Bayesian calibration, the present study investigates the impact of the availability of different spatial resolution
of occupancy data on the gap between predicted and measured energy use in buildings. The study also examines
the effect of occupancy data on the quality of the constructed prediction intervals (PIs) using the Coverage
Width-based Criterion (CWC) metric. CWC evaluates the PIs based on both their coverage (correctness) and
width (informativeness). This investigation takes the form of an actual building case study, with nine months
of hourly measured building electricity use, WiFi connection counts as a proxy for occupancy, and actual
weather data. In general, the building energy model’s accuracy improves with the occupancy and plug-loads
schedule derived from WiFi data. Specifically, the Coefficient of Variation Root Mean Square Error (CV[RMSE])
reduced from 37% to 24% with an exponential improvement in the PIs quality compared to the results
obtained with ASHRAE 90.1 reference schedules. However, the increase in prediction accuracy shrank to
5% CV(RMSE) and a comparable CWC upon calibrating the base loads of the reference schedules. Increasing
the spatial resolution from building aggregated to floor aggregated occupancy data worsened the CV(RMSE)
and CWC, suggesting trade-offs between parameter uncertainty and model bias/inadequacy. These results
contribute to our understanding of the interactions between model complexity, simulation objectives, and data
informativeness, facilitating future discussions on the right level of abstraction when modeling occupancy.
1. Introduction

Occupants have been identified as one of the six driving factors
of energy use in buildings [1] and as a source of uncertainty with
a significant impact on building performance simulation (BPS) [2].
Building occupants not only act as a source of internal heat gains, but
their interaction with different building systems also exerts influence
on a building’s heating and cooling energy (HVAC system operations
and efficiency), as well as its lighting and equipment loads [3,4]. In
an evaluation of 121 LEED certified buildings, Turner and Frankel [5]
showed that significant variability exists between the design-phase
model predictions and measured energy performance. Occupancy was
hypothesized as a possible reason behind the discrepancies, citing
differences in operational practices and schedules that were not an-
ticipated during the energy modeling process. The perception that
occupants causes a significant source of discrepancy between build-
ing energy simulation predictions and actual observations is further
corroborated in an international survey of 274 BPS users across 37
countries [6].

∗ Corresponding author.

1.1. Occupants and building performance simulation (BPS)

The terms occupant behavior (OB) and occupancy are used con-
versely in the existing literature [7]. Although there are overlaps in
the methods used in their predictions, modeling behavior is a lot
more complicated than occupancy (status of occupant presence or
absence). In BPS literature, OB is often regarded as the quantitative
description of the direct and indirect influences that building occu-
pants exert on building energy performance. Examples include the
impact that occupants have on energy use resulting from lighting and
appliance usage, window opening, HVAC (Heating, Ventilation, and
Air-Conditioning) usage and controls, etc [8,9]. Behavior referring to
observable stimulus–response or how occupants make decisions and
interact with several factors that can be separated into various biologi-
cal, psychological, and social contexts [10], although important, is less
common in BPS and not addressed within the current paper.

BPS is often used to quantify the impact that occupant presence
and behavior might have on simulation predictions, energy-saving
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potentials of different energy conservation measures (ECMs), and per-
formance of various building systems. For instance, Clevenger and
Haymaker [11] quantified the uncertainties in BPS due to OB and
found that the predicted energy consumption could differ by more than
150% when occupant-related inputs were all maximized or minimized.
Sun and Hong [12] defined three different occupant behavior styles
(austerity, normal, and wasteful) and showed that OB has a significant
impact on ECMs such as zonal HVAC control and mix-mode ventilation
because of their strong occupant interactions. Azar and Menassa [13]
performed a comprehensive sensitivity analysis on OB related parame-
ters. Their simulation results indicate that on average, heating setpoint
temperature was the most sensitive parameter in small-size buildings
located in climate zone 2 and that larger buildings were more sensitive
to variations in lighting and equipment usage. Using a residential
prototype building in EnergyPlus, O’Neil and Niu [14] showed that a
3.76% average coefficient of variation in OB related input parameters
led to about 4% impact on HVAC annual and peak energy consumption.

To bridge these performance gaps, there has been increasing re-
search concerning the modeling and simulation of occupant behavior in
buildings [2,15]. Occupant presence and behavior in BPS are commonly
represented with diversity factors in the form of standardized hourly
schedules or profiles. Default diversity factors are typically obtained
from codes and standards such as the ASHRAE 90.11 [16] when actual
schedules are unknown. A limitation of these standardized profiles is
that they are not specific to the buildings being modeled and have
been shown to differ substantially from actual diversity profiles [17–
19]. To overcome the limitations of its generality, multiple efforts have
been undertaken to derive more reliable profiles. For instance, Davis
and Nutter [20] derived occupancy profiles for eight university build-
ings using data from various data sources (security cameras, doorway
counting sensors, classroom scheduling data, and manual observations).
D’Oca and Hong [21] applied a three-step data mining framework
to occupancy data for 16 offices and identified four archetypal occu-
pant patterns that can be transformed into typical working profiles of
occupancy for use in BPS.

1.2. Modeling of occupants

In general, the modeling of occupancy and OB can be categorized
as deterministic or stochastic. Deterministic models include schedules
and deterministic rules. Schedules or diversity factors are often repre-
sented as fractions in the range [0, 1] and relates hourly variations in
occupancy, lighting, and equipment loads to their respective maximum
occupancy or peak power density. The rule-based approach prescribes
a set of deterministic rules that can be used to predict OB. For ex-
ample, Yu [22] applied genetic programming to learn rules to predict
occupancy in a single person office based on motion sensor data. The
advantage of deterministic models lies in its simplicity and that model
outputs are fully determined by the parameter values and simulation
conditions.

Stochastic models of occupancy and behavior are often proposed
as an alternative to deterministic models to more realistically account
for the stochastic nature of OB. Notably, stochastic models have been
proposed to represent arrival and departure times [23], absence and
presence duration [24,25], and overtime [26] more accurately. Also,
considerable efforts have been directed towards developing more de-
tailed occupant models to capture the complexity and wide variability
(both spatially and temporally) in occupant behavior. Methods that
have been proposed typically involves sampling from probability dis-
tributions with parameters estimated from measured data [24,26];
stochastic Markov processes that generate time-series of states based on
the state attained at the previous time-step [25,27,28]; and agent based

1 http://sspc901.ashraepcs.org/documents/Addendum_an_Sched_and_Load.
df.
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models that involve defining and modeling autonomous individuals
(agents), their mutual relationship, as well as their interaction with
respective building spaces and systems [29].

However, the replacement of deterministic models with more com-
plex stochastic processes is not synonymous with better predictive accu-
racy. Using an out-of-sample test dataset Mahdavi and Tahmasebi [30]
evaluated two existing probabilistic occupancy models and a non-
probabilistic occupancy model. They found that the predictive accuracy
of all three models was low in general and that the simpler non-
probabilistic model performed better in view of short-term occupancy
predictions. Using simulation, Gilani, O’Brien, and Gunay [31] con-
cluded that deterministic models could reasonably represent the occu-
pants’ impact on the building’s average annual energy use. However,
the effect of individual occupants diminishes with building size. Ad-
ditionally, increasing complexity is often associated with other issues
that include onerous data requirements, an increasing likelihood of
model overfitting [15,32], as well as the introduction of uncertainties
that may lead to identifiability issues during the parameter estimation
process [33,34].

1.3. Occupant sensing for BPS

With advancements in occupant sensing and data acquisition tech-
nology, occupant information is becoming increasingly available and
more easily accessible. Sensing and data acquisition form an impor-
tant aspect when modeling OB in many studies. Examples include
using an extensive network of environmental sensors to model oc-
cupancy [28], power consumption data of household appliances to
characterize OB [35], and WiFi technologies to detect occupancy pat-
terns [36]. Not surprisingly, models that are based on measured data
also performs the best [15].

According to Melfi et al. [37], occupancy sensing can be cate-
gorized as either explicit or implicit. Implicit occupancy sensing in-
volves the use of existing building infrastructure to measure occu-
pancy because the interactions between occupants and the building
systems can be used to determine occupancy information. On the
contrary, explicit occupancy sensing involves the addition of specific
occupancy sensing and detection capabilities and is often synony-
mous with high installation and maintenance costs [38]. The different
occupancy monitoring and detection technologies include surveys, mo-
tion sensors (e.g., passive infrared (PIR) and ultrasonic detectors),
vision-based sensors (e.g., video cameras), and radio frequency (RF)
based sensors (e.g., ultra-wideband (UWB), radio-frequency identifi-
cation (RFID), Wireless Local Area Network (WLAN) or WiFi) [39,
40].

The availability of occupant information provides an opportunity to
quantify its contribution towards bridging the performance gap more
robustly. Specifically, the measurements provide a means to empirically
test the impact that various spatial resolutions of occupancy informa-
tion have in reducing the discrepancies between simulation predictions
and real measurements. For instance, using post-occupancy surveys to
quantify OB, Yu, Du, and Pan [41] showed that the prediction accuracy
of the energy model could be improved by integrating the survey
results into the simulation model. Sangogboye [42] showed that using
higher resolution occupancy data does not improve the accuracy of the
energy model that was previously calibrated on lower resolution data.
Using data from 16 single occupied private offices, O’Brien et al. [43]
concluded that modeling occupancy from aggregated data tends to
suppress inter-occupant diversities. The authors argue that although the
high-level metrics showed that there is no strong evidence suggesting
the suppression of inter-occupant diversities, occupancy profiles gener-
ated from aggregated data do not contain the same level of diversities

observed in individual occupant profile.

http://sspc901.ashraepcs.org/documents/Addendum_an_Sched_and_Load.pdf
http://sspc901.ashraepcs.org/documents/Addendum_an_Sched_and_Load.pdf
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1.4. Aims and objectives

The importance and originality of this study are that it explores
the effect of including different resolutions of occupant information on
model predictive performance. Although the characterization of OB’s
impact on BPS is not new, a forward or classical modeling approach
is typically employed, with most studies focusing on the modeling
methodology of occupants and its resulting impact on BPS. It is also not
evident from existing literature if standardized profiles can be tuned to
provide models that are good enough for predicting building energy
usage. If standardized profiles are lacking, at what spatial resolution
should occupant information be included in BPS to reduce the gap
between simulated and measured energy use in buildings given an
adequate calibration procedure? Monitoring occupancy at high spatial
resolution (i.e., for a large number of zones) is an expensive endeavor,
and there is a need to balance practicality with accuracy.

In this study, we employ an inverse empirical approach to quantify
the effect of including occupant information on BPS predictive perfor-
mance. Bayesian calibration is used for uncertainty quantification and
to construct prediction intervals (PIs) given the stochastic nature of
OB and because BPS predictions are influenced by many known and
unknown factors. The purpose of modeling and quantifying uncertain-
ties is to support any claims about the simulation predictions’ accuracy
robustly. Therefore, the objectives of this paper are:

• To evaluate the impact of including different spatial resolutions
of occupancy information on model predictive performance.

• To elucidate the impact of base loads on predictive performance.
Specifically, we would like to evaluate the improvements in pre-
dictive performance if the base loads of standardized profiles were
calibrated.

• To propose a quantitative measure for the evaluation of BPS
simulation PIs against measured data. Most studies in BPS liter-
ature evaluate PIs using their mean value, which diminishes the
purpose of constructing PIs in the first place [44].

. Method

A combination of data acquisition, modeling, and calibration will
e used to quantify the effect of occupancy data on matching building
nergy simulation models to measured data. As illustrated in Fig. 1,
he framework used for the evaluation of different spatial resolutions
f occupancy data on the efficacy of the calibration can be summarized
s:

1. Acquire occupant count information, total building energy con-
sumption data, and the corresponding weather data.

2. Create occupant information at different spatial resolution.
3. Calibrate building energy model with different spatial resolution

of occupant information.
4. Evaluate and compare ‘‘calibrated’’ model’s performance.

.1. BayesIan calibration and meta-modeling

The impact that the availability of different spatial resolutions of oc-
upant presence information would have on the predictive performance
f the building energy model is evaluated within a Bayesian calibration
ramework. The motivation behind a Bayesian approach is to construct
rediction intervals and quantify the uncertainties associated with
he predictions of the realizations. The pioneering work by Kennedy
nd O’Hagan [45] laid the foundation for Bayesian calibration that
xplicitly models uncertainty in model inputs, the discrepancy between
he simulator and the actual physical system, and observation errors
Eq. (1)).
3

(𝑥) = 𝜂(𝑥, 𝑡) + 𝛿(𝑥) + 𝜖(𝑥) (1) t
where, 𝑦(𝑥) is the observed field measurement, 𝜂(𝑥, 𝑡) is the output of
the building energy simulation given observable inputs 𝑥 and unknown
alibration parameters 𝑡, 𝛿(𝑥) is the model bias or inadequacy or dis-
repancy, and 𝜖(𝑥) (assumed to be i.i.d and normally distributed) is used
o model observation errors. The purpose of including the discrepancy
erm is to find the posterior distribution representative of the true but
nknown values of the calibration parameters 𝑡. By incorporating model
nadequacy 𝛿, we believe that the calibration quality would improve
ince the model would better represent the actual physical system.

Since the iterative calibration process can be computationally in-
ensive, a Gaussian process (GP) emulator or metamodel is used to
mulate the energy model and combine measured data with simulation
ata [46].

We use a GP metamodel because it has been shown to provide
he highest accuracy compared to other commonly used statistical
odels despite its longer run-time [47]. Maximin Latin hypercube

ampling [48] was used to determine the different values of calibration
arameters that would be used for the construction of the GP meta-
odel. Hamiltonian Monte Carlo (HMC), a Markov chain Monte Carlo

MCMC) method, is used to sample from the posterior probability dis-
ributions for more efficient sampling and better convergence [49,50].
elman Rubin statistics (𝑅̂ within 1 ± 0.1) and trace plots of multiple
CMC chains were used to ensure adequate convergence to a common

tationary distribution. The source code, along with details on the
mplementation of Bayesian calibration utilizing a GP metamodel, can
e found in Chong and Menberg [33].

.2. Calibrating load profiles/schedules

Internal loads refer to occupants, equipment (plug and process), and
ighting loads. In this study, we quantify the effects on the model’s
redictive performance when the schedule base load fraction is mod-
led as a calibration parameter. Calibrating the schedule base load
raction increases the degrees of freedom for matching the simulation
redictions to the measured data. Base load fraction here refers to the
inimum schedule fraction. Even though an hourly schedule is used,
e do not calibrate every hourly schedule value because calibrating too
any parameters results in an ill-posed inverse problem. This is due to

verparameterization that could lead to issues of identifiability [51].
lso, simpler models generalize better. More calibration parameters
ean more complex models that tend to over-fit the measured data.

Fig. 2 shows an illustration of varying the base load fraction of the
SHRAE 90.1 [16] equipment schedule while keeping the schedule’s
hape. We do this by taking advantage of the Energy Management
ystem feature in EnergyPlus to modify and scale the schedule value
uring simulation runtime dynamically. Algorithm 1 shows the pseu-
ocode for setting and scaling the equipment schedule fraction based on
ccupant schedule fraction and the equipment base fraction. At every
imulation timestep 𝑡, the equipment schedule value 𝐸𝑄𝑈𝐼𝑃𝑡 is set
qual to the calibration parameter 𝑋 (base load fraction) when the
uilding is not in operation. During operating hours, 𝐸𝑄𝑈𝐼𝑃𝑡 is set to
qual the occupant schedule fraction 𝑂𝐶𝐶𝑡 and scaled within the range
𝑋, 1].

.3. Performance evaluation

Fig. 3 shows the framework used to evaluate model performance.
irstly, the dataset is split into a training dataset that is used for the
alibration and a testing dataset to validate the model’s performance.
fter removing missing values, the dataset comprises of 6504 samples.
e use 200 random samples (i.e., the training data) for the Bayesian

alibration. The remaining 6304 samples were then used as a hold-out
est dataset for evaluating calibration performance. Since a good match
etween simulation predictions and measured data on the training
ataset (i.e., data used for the calibration) does not necessarily mean

hat a proper calibration has been carried out, the test dataset that
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Fig. 1. Framework for using real data to evaluate the impact of occupant presence on building energy simulation. Steps include (1) data acquisition; (2) using WiFi data as a
proxy for occupant presence, create different resolution of occupant information; (3) Apply Bayesian calibration; and (4) Evaluate and compare the efficacy of the calibration given
different spatial resolution of occupant information.
Fig. 2. Modifying the base fraction of the load profile/schedule. Top plot shows the default ASHRAE 90.1 equipment (plug and process) schedule with base fraction of 0.3
(minimum schedule value). Bottom plot shows the same schedule re-scaled with base fraction of 0.1 and 0.5 respective.
was not used during the calibration is used to validate the calibration
performance. Section 3.2 and Table 3 summarizes the data, priors,
inputs and output used for the Bayesian calibration.

Having completed the Bayesian calibration, the posterior estimates
of the calibration parameters were extracted and used as inputs to
4

the EnergyPlus model. We then run these EnergyPlus models and
form probabilistic predictions using the simulation output. The prob-
abilistic predictions are then evaluated by comparing them with the
6304 samples of testing data. The comparison is made using two
evaluation metrics, the Coverage width-based criterion (CWC) and the
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Fig. 3. Framework for evaluating model performance. The posterior distributions of the EnergyPlus parameters generated from the Bayesian calibration is used as inputs to the
model. The outputs of the model is then evaluated.
Algorithm 1: Pseudocode for modifying and scaling the equip-
ment schedule based on occupant information and equipment base
fraction

X = equipment base fraction;
EQUIP = equipment schedule;
OCC = occupancy schedule;
OCCmin = minimum occupancy schedule fraction;
for every simulation timestep t do

if building is not in operation then
EQUIPt = X;

else
EQUIPt = (OCCt − OCCmin)(1 − X)∕(1 − OCCmin) + X;

end
end

coefficient of Variation of the Root-Mean-Square Error (CV[RMSE]).
We use CV[RMSE] to provide an indication of the model’s prediction
accuracy and CWC to evaluate the quality of the probabilistic pre-
dictions. Consequently, each metric provides a different measure of
calibration effectiveness and is chosen to provide a robust evaluation
of the uncertainties associated with the simulation predictions.

2.3.1. Prediction interval (PI)
With the presence and accumulation of different sources of uncer-

tainties [52], probabilistic predictions have often been proposed in the
literature to aid decision making [53]. To that end, PI construction is
often used to predict the range (with a certain probability) a future
observation is likely to fall. Therefore, PI construction provides the
capability to quantify the uncertainties associated with the differences
between the measured data and the simulation predictions.

Probabilistic predictions are often evaluated based on their coverage
probability. An example of such a metric is the PI coverage probability
(PICP), which measures the percentage of observations that falls within
the PIs (Eq. (2)).

𝑃𝐼𝐶𝑃 = 1
𝑛𝑡𝑒𝑠𝑡
∑

𝑐(𝛼)𝑖 (2)
5

𝑛𝑡𝑒𝑠𝑡 𝑖=1
where

𝐶𝑖 =

{

𝑦𝑖 = 1, 𝑦𝑖 ∈ [𝐿𝑖, 𝑈𝑖]
𝑦𝑖 = 0, 𝑦𝑖 ∉ [𝐿𝑖, 𝑈𝑖]

(3)

𝑛𝑡𝑒𝑠𝑡 is the number of samples in the test dataset; 𝑦𝑖 denotes the 𝑖th
observed value; 𝐿(𝛼)

𝑖 and 𝑈 (𝛼)
𝑖 are the lower and upper bounds of the

𝑖th PI with a confidence level of (1 − 𝛼)%, respectively.
However, coverage probability by itself is not a good measure

because a very high coverage probability can easily be achieved with
PIs that have a broad range (i.e., a very small and large lower and
upper bound respectively). As shown in Fig. 4a, PIs that are too wide
are not useful in practice because they convey little information about
the variations in the measurements. Therefore, evaluation of PIs based
on coverage alone is subjective and can lead to misleading results [54].
Consequently, another measure that quantifies the width of the PIs is
necessary. The Prediction Interval Normalized Mean Width (PINMW)
(Eq. (4)) measures this property of the PI.

𝑃𝐼𝑁𝑀𝑊 = 1
𝑛𝑡𝑒𝑠𝑡 ⋅ 𝑅

𝑛𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝑈 (𝛼)

𝑖 − 𝐿(𝛼)
𝑖 )2 (4)

where 𝑅 is the range of the measured values. Normalizing by 𝑅 (Eq. (4))
allows us to compare the PIs generated from different datasets and
calibration methods.

Although narrow PIs are more informative about measurement vari-
ability, the PIs are not reliable if they have poor coverage probability
(Fig. 4b). Therefore, probabilistic predictions should have a high cover-
age probability and a narrow range to be useful (Fig. 4c). Consequently,
performance metrics used to evaluate PIs should consider both coverage
probability and PI width. An example of such a metric is the coverage
width-based criterion (CWC). Using CWC provides an evaluation of the
PIs from these two conflicting viewpoints of coverage probability and
PI width.

2.3.2. Coverage width-based criterion (CWC)
In this study, we use the coverage width-based criterion (CWC)

(Eq. (5)) [54] to evaluate the PIs. The CWC is a measure that assesses
the quality of the PIs based on both their coverage and their width
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Fig. 4. (a) Prediction intervals with a high coverage probability but a wide range contain little or no information about the variations in the measurements; (b) Narrow PIs with
poor coverage probability may be informative about measurement variability but are not reliable; (c) PI should have a high coverage probability and a narrow range to be useful.
C

through a combination of the PICP (Eq. (2)) and the PINMW (Eq. (4))
respectively.

𝐶𝑊 𝐶 = 𝑃𝐼𝑁𝑀𝑊 + 𝛾(𝑃𝐼𝐶𝑃 )𝑒−𝜂(𝑃𝐼𝐶𝑃−𝜇) (5)

where

𝛾(𝑃𝐼𝐶𝑃 ) =

{

0, 𝑃 𝐼𝐶𝑃 ≥ 𝜇
1, 𝑃 𝐼𝐶𝑃 < 𝜇

(6)

𝜇 is the nominal confidence level and its value can be determined based
on the confidence level (1 − 𝛼)% associated with the PIs. 𝜂 is a scaling
factor for distinguishing PICP violations from 𝜇. Together, 𝜇 and 𝜂 are
hyperparameters used to control the location and the amount of CWC
jump. In this study, 𝜂 and 𝜇 are set to 50 and 0.65 respectively.

Intuitively, the CWC exponentially penalizes PIs if PICP is less than
he nominal confidence interval 𝜇 regardless of the width of the PIs. If
𝐼𝐶𝑃 ≥ 𝜇 than CWC value is influenced by PINMW. As illustrated

n Fig. 4c, ideally, we want PIs with small CWC values, which is
ndicative of PIs with narrow widths (small PINMW) and high coverage
robability (large PICP).

.3.3. CV(RMSE)
The coefficient of Variation (CV) of the Root-Mean-Square Error

RMSE) (Eq. (7)) is commonly used to assess how well the calibrated
nergy simulation describes the measured data, and is used in this
tudy to provide an indication of how well the mean of the posterior
redictions matches the measured data. Relative to monthly and hourly
alibration data, ASHRAE Guideline 14 [55] specifies a threshold of
5% and 30% respectively. With probabilistic predictions, prediction
erformance is evaluated using the mean of the CV(RMSE) computed
sing the MCMC samples from the posterior predictions.

𝑉 (𝑅𝑀𝑆𝐸) = 100 ×

√

∑𝑛𝑡𝑒𝑠𝑡
𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 ∕ (𝑛𝑡𝑒𝑠𝑡 − 1)

𝑦̄
(7)

𝑦𝑖 =
1
𝑚

𝑚
∑

𝑗=1
𝑦̂𝑖,𝑗 (8)

where 𝑛𝑡𝑒𝑠𝑡 is the number of samples in the test dataset; 𝑦𝑖 denotes the
mean of the 𝑖th predictions (Eq. (8)); 𝑦̄ denotes the mean of the 𝑛𝑡𝑒𝑠𝑡

easured values that forms the test dataset; m is the number of MCMC
amples in the posterior predictions of 𝑦𝑖.

. Case study

.1. Building description

The building case study is an actual educational building located
6

t the National University of Singapore in Singapore. It is a six-storey
Table 1
Space type percentage breakdown.

Space type Percentage of total

Faculty rooms 32%
Lecture halls/Seminar rooms 18%
Open offices 7%
Circulation 35%
Mechanical and electrical rooms 5%
Others 4%

building with a total floor area of 5527 m2. Table 1 shows the percent-
age floor area breakdown of the building based on space types, with
faculty rooms and teaching spaces accounting for the majority of the
occupied spaces. The HVAC system is a VAV system served by central
district water-cooled chillers. Given Singapore’s tropical climate, no
heating is required, and cooling is provided throughout the year to
maintain thermal comfort.

Nine months of measured data at an hourly resolution from 1 Apr
2018 to 31 Dec 2018 was collected and consists of the following:

• Total building electricity energy consumption.
• WiFi connection counts for each floor of the building. WiFi data

is collected from all WiFi Access Points (AP) located within the
building.

• Actual Meteorological Year (AMY) weather data from the Singa-
pore Changi airport weather station (WMO #486980).

3.2. Virtual experiments

Using data from the case study building, four virtual experiments
A, B, C, and D are defined to evaluate the impact of occupant pres-
ence on the calibration efficacy of building energy simulation and are
summarized in Table 2 with descriptions as follows.

Case A Default ASHRAE 90.1 occupancy, lighting and equipment load
schedules.

Case B Default ASHRAE 90.1 occupancy, lighting and equipment load
schedules. Equipment base load fraction is modeled as an uncer-
tain parameter (Fig. 2) that is calibrated against hourly whole
building energy usage data.

ase C Default ASHRAE lighting schedule. Whole building aggregated
occupant information is used to derive both building aggregated
occupancy and equipment load schedules. Equipment base load
schedule fraction is modeled as an uncertain parameter that is
calibrated against hourly whole building energy usage data.
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Fig. 5. Scatter plot of building aggregated (top plots) and floor aggregated (bottom plots) WiFi connection counts against building electricity energy consumption during operating
and non-operating hours. Building aggregated count equals the sum of the floor aggregated counts.
Case D Default ASHRAE lighting schedule. Floor aggregated occupant
information is used to derive the corresponding occupancy and
equipment load schedules for each floor. Equipment base load
schedule fraction for each floor aggregated schedule is modeled
as an uncertain parameter that is calibrated against hourly
whole building energy usage data.

Table 3 summarizes the measured data, calibration parameters,
GP hyperparameters, and priors used for the Bayesian calibration. To
ensure a fair comparison, each case was optimized by conducting a grid
search of the Gaussian process hyperparameters on the training dataset
and selecting the hyperparameters that gave the lowest CWC (Eq. (5))
values. The calibration is carried out against hourly building energy
consumption data.

WiFi connection counts have been shown in previous studies to
be a suitable estimate of the hour to hour variations in building
occupancy [37] and equipment (plug and process) loads [56]. WiFi
connection counts have also been shown to have strong positive cor-
relation with building electricity consumption [37,57,58]. Therefore,
WiFi data is used in this study as an implicit estimate of occupancy and
equipment profiles or schedules. We reaffirm this by plotting scatter-
plots of electricity consumption against WiFi connection counts during
operating and non-operating hours (Fig. 5) and computing their Pear-
son correlation. At the building level, a strong correlation (r = 0.86)
was observed between electricity consumption and WiFi data. When the
WiFi data was dis-aggregated by floors, a slight decrease in correlation
was observed (r = 0.78, 0.84, 0.80, 0.82, 0.73 for floors 2, 3, 4, 5, and
6 respectively) but remains strong. By contrast, a weak correlation was
observed during non-operating hours with both building aggregated (r
= 0.17) and floor aggregated (r = 0.16, 0.26, 0.18, 0.11, 0.02 for floors
7

2, 3, 4, 5, and 6 respectively) WiFi data. The weak correlation during
non-operating hours provides justifications for modeling the base loads
as an uncertain parameter to be calibrated. To ensure that the diversity
factors generated based on the WiFi connection counts are correctly
applied, we sum the hourly total occupant count for the building and
checked that they are the same across the different spatial resolutions.

4. Results

Table 4 summarizes the results of the four virtual experiments using
the testing data. CWC and CV(RMSE) were computed to provide a
quantitative assessment and comparison of the predictive performance
at different resolution of occupant information with both synthetic and
real data (see Table 2).

As illustrated in Fig. 6, the quality of the prediction intervals
improves when occupant data is included in the calibration. This is
indicated by lower CWC and CV(RMSE) values in cases C and D relative
to A and B. Specifically, compared to default ASHRAE 90.1 schedules
(case A), including occupancy data (cases C and D) shows a 11%–13%
reduction in mean CV(RMSE) and an exponential improvement in CWC.
The CWC measure (Eq. (5)) is based on PICP (prediction coverage) and
PINMW (prediction width). Its hyperparameters (𝜂 and 𝜇) were chosen
so that PIs with 𝑃𝐼𝐶𝑃 ≤ 65% are heavily penalized. The considerably
improvements in the CWC measure is mainly brought about by an
increase in prediction coverage (PICP). From Table 4, it can be observed
that including occupant information increases PICP by more than 30%
(compared to using default ASHRAE 90.1 schedules).

A comparison of the simulation predictions with the measured data
reveals that the calibrated model is unable to correctly capture the
variability when the default ASHRAE 90.1 schedules is used. Fig. 8
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Table 2
Summary of experiments used to investigate the effect that different spatial resolution of occupant presence has on the
calibration efficacy of building energy simulation.

Case Occupant data source Occupant data resolution Calibrates equipment base load

A ASHRAE 90.1 None No
B ASHRAE 90.1 None Yes
C WiFi Aggregated by building Yes
D WiFi Aggregated by floor Yes
Table 3
Data description, priors, inputs and output for Bayesian calibration using the real dataset (Building B).

Description

Building
Educational building located in Singapore

Data collection period 1 Apr 2018 to 31 Dec 2018

Weather Singapore Changi Airport WMO #486980 (AMY)

No. of samples training: 200 testing: 6304

Observed output 𝑦(𝑥) Total building energy consumption (excluding plant side
cooling consumption)

Observed inputs 𝑥 Outdoor dry-bulb air temperature [◦C]
Outdoor relative humidity [%]
Direct solar radiation [W/m2]
Occupant schedules [−] (see Table 2)

Calibration parameters 𝑡a Occupant density [m2∕person] ∼  (15, 23)
Lighting power density (LPD) [W/m2] ∼  (3, 20)
Equipment power density (EPD) [W/m2] ∼  (3, 30)
Base load ratio (EPD) [−] ∼  (0.05, 0.6)

Gaussian process
hyperparameters

𝜆𝜂 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎 = 10, 𝑏 = 10)
𝜆𝛿 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎 = 10, 𝑏 = 0.1)
𝜌𝜂 , 𝜌𝛿 ∼ 𝐵𝑒𝑡𝑎 (𝑎 = 1, 𝑏 = 𝑥)
𝜆𝜖 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎 = 10, 𝑏 = 𝑦)
argmin(𝑥,𝑦)𝐶𝑊 𝐶b

𝑥 ∈ (0.1, 0.3, 0.5) and 𝑦 ∈ (0.01, 0.05, 0.1)

aFor case D (total number of occupants per floor is approximated using WiFi connection count data), the
power density and base load of each floor is modeled as a random variable that is calibrated. For a five
storey building, this means a total of ten calibration parameters for EPD and each corresponding base load.
Note that we model occupant density as a calibration parameter. This is because, although WiFi data acts
as a good proxy for occupant hourly variation/schedule, it is not a good estimate for actual occupant count.
bOptimized by conducting a grid search on the training dataset and selecting the x and y values that gave
the lowest CWC (Eq. (5)) values. A detailed explanation of the GP hyperparameters for Bayesian calibration
can be found in Chong and Menberg [33].
Table 4
Performance of prediction intervals for the four case studies to 2 significant figures.

Metrics Case

A B C D

CV(RMSE) 37 29 24 26
CWC 9.7 × 106 1.3 0.16 0.20
PICP 0.33 0.65 0.67 0.71
PINMW 0.11 0.17 0.16 0.20

illustrates this observation when comparing case A simulation predic-
tions with the measured data. There are two distinct observations, (1)
the measurements tend to fall outside the range of Case A simulation
predictions, and (2) the simulation predictions overestimates and un-
derestimates the building’s electricity consumption during operating
(7am to 7pm on weekdays and 7am to 5pm on Saturdays) and non-
operating hours respectively. Evidently, a higher degree of freedom
when tuning the ASHRAE 90.1 schedules is necessary. We test this hy-
pothesis with case B where the base load schedule fraction is modeled
as a calibration parameter (see Section 2.2 for the methodology).

By calibrating the base load schedule fraction (Case A to Case
B), CWC values were substantially reduced (Fig. 6) due to significant
improvements in PI coverage of the measurements (approximately
30% increase in PICP as shown in Table 4). The increase in PICP is
8

Fig. 6. Coverage Width-based Criterion (CWC) values for the four cases A–D (described
in Table 2) for the test dataset. Plotted on the logarithmic scale to help visualize the
differences between the four cases.

further reinforced by Fig. 8 that shows a better match between case
B’s simulation predictions with the measured data than case A’s. What
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Fig. 7. Coefficient of Variation of the Root-Mean-Square Error (CV[RMSE]) values for
he four cases A–D (described in Table 2) for the test dataset.

an be seen in this figure is the improved prediction coverage of the
easured data, especially during non-operating hours (i.e., the base

oads). Case B’s mean CV(RMSE) is also 8% lower than case A (Fig. 7).
y contrast, the discrepancies between cases B and C is not as large as
hat between cases A and B. Including building aggregated occupancy
hows an additional 5% reduction in CV(RMSE) (Fig. 7) and slight
mprovement in CWC from 1.3 to 0.16 (Fig. 6). Nonetheless, Fig. 8
hows that including building aggregated occupancy (case C) leads
o simulation predictions that are able to match the measured data
etter during operating hours. Interestingly, Fig. 8 shows that despite
aving a lower CWC value (Fig. 6), case C has comparable variance
ith cases A and B. Table 4 elucidates that the lower CWC is due to

ignificant improvements in PI coverage (PICP) compared to case A.
y contrast, the slight improvement in CWC between cases B and C
an be attributed to a slight improvement in both PI coverage (PICP)
nd width (PINMW).

Providing floor aggregated occupancy (case D) does not improve
he quality and accuracy of the simulation PIs. A distinct improvement
n matching the measured data could not be observed between cases

and D (Fig. 8). Likewise, Figs. 6 and 7 show that compared to
ase C, case D has a slightly higher CV(RMSE) and CWC. A possible
xplanation for the worsened CV(RMSE) and CWC is that the diversity
actors from occupancy data provided at the floor level do not add more
nformation (as compared to building aggregated occupancy informa-
ion) towards the prediction of total building energy consumption.
dditionally, calibrating the power densities and base load schedule

raction of each floor may result in too many calibration parameters and
overly complex model. Surprisingly, CV(RMSE) of case D is between

hat of cases B and C. Following the principle of parsimony, case B that
oes not rely on any occupant data and has fewer lesser calibration
arameters might be preferred in scenarios where a CV(RMSE) of 29%
s deemed acceptable.

. Discussion

.1. Comparing ASHRAE schedule to using occupancy data

By substituting ASHRAE 90.1 reference schedules with building
ggregated occupancy data, the deviation between predicted energy
onsumption and measured data were reduced by 13%. The improve-
ents in prediction accuracy comes as no surprise since occupancy
iversity factors was shown to differ by as much as 46% in aver-
ge day profile peaks for private offices and about 12% reduction
or open plan office spaces as compared to ASHRAE 90.1 reference
chedules [17]. Variations in occupant related loads and schedules were
9

also shown to have an significant impact on total building predicted
energy usage [11]. Using an actual building, we showed that even
with an adequate calibration methodology, CV(RMSE) stayed above the
hourly threshold of 30% set by ASHRAE Guideline 14 [55] (Fig. 7). By
including occupancy information, this deviation was reduced to 29%
and within ASHRAE Guideline 14 [55] definition of a calibrated model.

Compared to the existing literature on occupant behavior, a notice-
able difference in this study lies in applying Bayesian calibration to
quantify the uncertainties in the simulation predictions. Additionally,
the quality of the constructed prediction intervals (PIs) were evalu-
ated using the coverage width-based criterion (CWC) that evaluates
the PIs for its correctness (coverage of PIs) and its informativeness
(width of PIs). As shown in Fig. 6, including occupancy information
exponentially improves the quality of the constructed prediction inter-
vals (PIs). Specifically, the PIs from a calibrated energy model where
the schedules were based on occupancy data were more theoretically
correct, with more than 30% of the measured data being covered
by the constructed PIs. One would have also expected that including
occupancy data would result in smaller PI widths representing a gain in
knowledge about model uncertainty. However, a comparable PI width
was observed across cases A, B, and C (Fig. 8). These observations
suggest that including occupancy data improves the correctness of the
constructed PI but does not have a significant impact on reducing
prediction uncertainty.

Interestingly, with case A, it was shown that a CV(RMSE) of 37%
can be achieved even though the constructed PIs only covered about
30% of the measured data. This observation provides evidence that
despite calibrating for internal load (people, lighting, and equipment)
densities, using fixed a priori reference schedules may result in sim-
ulation predictions in which the correctness of the constructed PIs is
questionable.

5.2. Modifying ASHRAE schedule

Although we show that using ASHRAE reference schedules provide
PIs with inadequate coverage of measured building energy usage, the
question is whether these reference schedules can be adjusted to en-
sure sufficient accuracy and correctness. Accordingly, we show that
increasing the calibration degree of freedom by modeling the schedule
base load fraction as a calibration parameter reduces the calibration
performance gap with comparable correctness in the constructed PIs
than if occupancy data was included. However, the mean CV(RMSE)
remains 5% larger. This suggests that if the peak and base loads can be
reasonably estimated, the ASHRAE reference schedules might not be
as detrimental as purported when used in BPS for predicting building
energy usage.

To date, fixed a priori reference schedules represent the lowest
level of complexity [15]. Schedules are also easy to include with
implementation-ready interfaces in existing energy simulation soft-
ware. Studies have shown that reference schedules may differ substan-
tially from actual diversity profiles [17–19]. However, the question
remains whether a reference schedule with its base and peak loads ad-
justed serves as a good enough abstraction of actual occupant presence
and their interaction with the building systems. Specifically, would
adding additional degrees of freedom to the reference schedule suffice
to achieve the predictive performance needed to meet the simulation
objectives, or is it necessary to introduce more complex probabilistic
and agent-based occupancy models? In future work, investigating this
research question might prove important.

5.3. Model complexity, inputs, outputs, and simulation objectives

Table 5 summarizes the spatial resolution investigated in this study
as compared to BPS literature. Out of the studies listed in Table 5, only
Sangogboye et al. [42] and Kim et al. [59] evaluated the impact of
schedules derived from occupancy information on the energy model’s
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Fig. 8. Box-plots of hourly building energy consumption measurements compared with simulation predictions (for cases A, B, C, and D) separated by weekdays, Saturday, and
Sunday. Descriptions of the cases can be found in Table 2.
Table 5
Summary of spatial resolution of measured data used as input to BPS investigated in this study as compared to BPS literature.
Spatial resolution References

Building aggregated Floor aggregated Space type aggregated Individual room

✓ ✓ Current study
✓ ✓ [42]
✓ [20,19]

✓ [60]
✓ [17]

✓ [18,28,21,30,59,24]
prediction accuracy. The remaining studies focused on the evaluation
of occupancy prediction models against observational data.

The study by Sangogboye et al. [42] is the only other study that
examined the effects of more than one spatial resolution on predictive
performance. They reported similar findings of an increase in prediction
error from 19.72% to 21.03% when switching from average building
aggregated occupancy data to detailed individual room occupancy
data. In this study, increasing the resolution from building aggregated
occupancy data to floor aggregated occupancy data showed a 2%
increase in prediction error. Additionally, we showed that increasing
10
the spatial resolution increased prediction uncertainties. It is probable
that using higher resolution occupancy data increases the number of
model parameters and thus the model’s complexity as compared to an
abstracted version where similar parameters are lumped into a single
building aggregated parameter. Depending on the outputs or responses
that the simulation model is calibrated against, increasing the number
of calibration parameters can result in issues of identifiability as a result
of overparameterization [33,34].

The study by Kim et al. [59] showed a drastic improvement in pre-
diction accuracy using schedules derived from sub-metered plug-load
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Fig. 9. Trade-offs between parameter uncertainty and model inadequacy with increasing model complexity, and the corresponding effects due to the simulation objectives, model
inputs and outputs, and calibration parameters.
Source: Adapted from Trčka and Hensen [32].
data and individual room occupancy data as compared with default
schedules. Through three case studies, they showed that CV(RMSE)
could be reduced from 67% to 21%, 128% to 31%, and 156% to 16%
respectively. Comparatively, we demonstrated in the current study a
reduction in CV(RMSE) from 37% (default schedule) to 24% (building
level occupancy data). The considerable improvements in prediction
accuracy in Kim et al. were because their baseline models that use
the default schedules had substantially larger errors. A probable expla-
nation is that the baseline default schedule model has been Bayesian
calibrated in our study but not in Kim et al.. Although not directly
comparable, it is also interesting to note that the CV(RMSE) obtained
in our study with building aggregated occupancy data is in a similar
range to that observed in Kim et al. with individual room occupancy
data.

Fig. 9 represents the trade-offs between model bias and parameter
uncertainty, drawing from the results of this study; ongoing discussions
to develop parsimonious building energy models [32,15,61]; and the
relevant literature that delves into the effects on model performance
with varying model complexity, data quality, and the simulation ob-
jectives [62–65]. The findings from this study suggest that although
complex models provide a better representation of the actual physical
building systems and sub-systems, they may not be useful if a com-
prehensive dataset is not available to constrain each pathway. This is
because the model’s performance depends on (1) model complexity,
(2) simulation objectives, and (3) data informativeness. A more accu-
rate representation of building systems and sub-systems requires more
knowledge that could come from informative data streams, detailed
drawings, and specifications because of the increasing number of model
parameters. Additional complexity inadvertently leads to an increase
in the number of uncertain parameters that need to be calibrated
against an often limited amount of data streams. Therefore, it is crucial
that modelers identify the appropriate level of complexity for a given
dataset and simulation objective (question of interest). As suggested
by [66], simulation is no longer the art of performing high fidelity
simulations but rather performing the right type of virtual experiment
with the right model. The effects of model complexity and structure,
simulation objectives, and data informativeness on building perfor-
mance simulation remain unanswered at present and is an important
issue for future research.
11
6. Conclusion

The present study was designed to determine the effect of occupancy
data on the building energy simulation model’s predictive performance.
To robustly support claims about improvements in predictive perfor-
mance, Bayesian calibration is used to construct prediction intervals
(PIs) and quantify any associated uncertainties. We also propose using
the coverage width-based criterion to better evaluate the quality of the
PIs.

The more obvious finding to emerge from this study is that com-
pared to ASHRAE 90.1 reference schedules, including occupancy in-
formation (in the form of hourly profiles) improves the quality and
accuracy of the PIs.

One of the more significant findings revealed in this study is that
increasing the calibration degree of freedom by calibrating the schedule
base load fraction reduces the gap between using ASHRAE reference
schedules and occupancy information substantially. The finding sug-
gests that with a reasonable estimation of the peak and base loads
during design, the ASHRAE reference schedules might not be as detri-
mental as purported when the simulation objective is to predict total
building energy usage.

The second significant finding was that a higher spatial resolution
of occupancy data might result in poorer predictions with larger uncer-
tainties of total building energy usage than whole building aggregated
occupancy data. The finding supports the idea that additional model
complexity leads to an increase in parameter uncertainty. If data that is
informative about the simulation objective is not available to constrain

Fig. A.10. Posterior distribution of calibration parameters for Case A.
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Fig. A.11. Posterior distribution of calibration parameters for Case B.

Fig. A.12. Posterior distribution of calibration parameters for Case C.

Fig. A.13. Posterior distribution of calibration parameters for Case D.
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each pathway, it would inadvertently lead to an increase in overall
uncertainty despite a reduction in model bias or inadequacy arising
from more detailed modeling.

If applied to more buildings, the outcome of this study would
provide a basis for quantifying occupancy uncertainty during design,
thus preempting the performance gap through better quantification of
the variability in the predictions.
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