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Abstract

Occupancy is a significant area of interest within the field of building perfor-

mance simulation (BPS). Through Bayesian calibration, the present study in-

vestigates the impact of the availability of different spatial resolution of occu-

pancy data on the gap between predicted and measured energy use in buildings.

The study also examines the effect of occupancy data on the quality of the

constructed prediction intervals (PIs) using the Coverage Width-based Crite-

rion (CWC) metric. CWC evaluates the PIs based on both their coverage and

range. This investigation takes the form of an actual building case study, with

nine months of hourly measured building electricity use, WiFi connection counts

as a proxy for occupancy, and actual meteorological year (AMY) weather data.

In general, the accuracy of the building energy model improves with the

occupancy and plug-loads schedule derived from WiFi data. Specifically, the

Coefficient of Variation Root Mean Square Error (CV[RMSE]) reduced from

37% to 24% with an exponential improvement in the PIs quality compared

to the results obtained with ASHRAE 90.1 reference schedules. However, the

increase in prediction accuracy shrank to 5% CV(RMSE) and a comparable

CWC upon calibrating the base loads of the reference schedules. Increasing the

spatial resolution from building aggregated to floor aggregated occupancy data
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worsened the CV(RMSE) and CWC, suggesting trade-offs between parameter

uncertainty and model bias/inadequacy. These results contribute to our under-

standing of the interactions between model complexity, simulation objectives,

and data informativeness, facilitating future discussions on the right level of

abstraction when modeling occupancy in BPS.

Keywords: Occupant modeling, Building performance simulation, Building

simulation, Bayesian calibration, Uncertainty analysis

1. Introduction

Occupants have been identified as one of the six driving factors of energy

use in buildings [1] and as a source of uncertainty with a significant impact on

building performance simulation (BPS) [2]. Building occupants not only act

as a source of internal heat gains, but their interaction with different building

systems also exerts influence on a building’s heating and cooling energy (HVAC

system operations and efficiency), as well as its lighting and equipment loads

[3, 4]. In an evaluation of 121 LEED certified buildings, Turner and Frankel

[5] showed that significant variability exists between the design-phase model

predictions and measured energy performance. Occupancy was hypothesized

as a possible reason behind the discrepancies, citing differences in operational

practices and schedules that were not anticipated during the energy modeling

process. The perception that occupants causes a significant source of discrep-

ancy between building energy simulation predictions and actual observations

is further corroborated in an international survey of 274 BPS users across 37

countries [6].

1.1. Occupant behavior (OB) and building performance simulation (BPS)

In this paper, we define OB as a quantitative description of the influences

that building occupants exert on building energy performance. Examples in-

clude the impact on energy use resulting from lighting and appliance usage,

window opening, air-conditioning usage, etc [7, 8]. Behavior referring to ob-

servable stimulus-response or the way occupants act and interact with several
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factors that can be separated into various biological, psychological, and social

contexts [9] is not addressed within the current paper.

BPS is often used to quantify the impact that OB might have on simulation

predictions, energy-saving potentials of different energy conservation measures

(ECMs), and performance of various building systems. For instance, Clevenger

and Haymaker [10] quantified the uncertainties in BPS due to OB and found

that the predicted energy consumption could differ by more than 150% when

occupant-related inputs were all maximized or minimized. Sun and Hong [11]

defined three different occupant behavior styles (austerity, normal, and waste-

ful) and showed that OB has a significant impact on ECMs such as zonal HVAC

control and mix-mode ventilation because of their strong occupant interactions.

Azar and Menassa [12] performed a comprehensive sensitivity analysis on OB

related parameters. Their simulation results indicate that on average, heating

setpoint temperature was the most sensitive parameter in small-size buildings

located in climate zone 2 and that larger buildings were more sensitive to vari-

ations in lighting and equipment usage. Using a residential prototype building

in EnergyPlus, O’Neil and Niu [13] showed that a 3.76% average coefficient of

variation in OB related input parameters led to about 4% impact on HVAC

annual and peak energy consumption.

To bridge these performance gaps, there has been increasing research con-

cerning the modeling and simulation of occupant behavior in buildings [2, 14].

Occupant presence and behavior in BPS are commonly represented with diver-

sity factors in the form of standardized hourly schedules or profiles. Default

diversity factors are typically obtained from codes and standards such as the

ASHRAE 90.11 [15] when actual schedules are unknown. A limitation of these

standardized profiles is that they are not specific to the buildings being mod-

eled and have been shown to differ substantially from actual diversity profiles

[16, 17]. To overcome the limitations of its generality, multiple efforts have been

undertaken to derive more reliable profiles. For instance, Davis and Nutter [18]

1http://sspc901.ashraepcs.org/documents/Addendum_an_Sched_and_Load.pdf
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derived occupancy profiles for eight university buildings using data from various

data sources (security cameras, doorway counting sensors, classroom scheduling

data, and manual observations). D’Oca and Hong [19] applied a three-step data

mining framework to occupancy data for 16 offices and identified four archety-

pal occupant patterns that can be transformed into typical working profiles of

occupancy for use in BPS.

1.2. Modeling of occupancy

Considerable efforts have also been directed towards the development of

more detailed occupant models to capture the complexity and wide variability

(both spatially and temporally) in occupant behavior. These include proba-

bilistic models that determines presence based on a probability function [20];

stochastic markov chain models that generates time-series of states based on

the state attained at the previous time-step [21, 22]; and agent based models

that involves the defining and modeling of autonomous individuals (agents),

their mutual relationship, as well as their interaction with respective building

spaces and systems [23]. However, complex models do not always provide bet-

ter predictive performance. Using an out-of-sample test dataset Mahdavi and

Tahmasebi [24] evaluated two existing probabilistic occupancy models and a

non-probabilistic occupancy model. They found that the predictive accuracy

of all three models was low in general and that the simpler non-probabilistic

model performed better in view of short-term occupancy predictions. Using

simulation, Gilani, O’Brien, and Gunay [25] concluded that deterministic mod-

els could reasonably represent the occupants’ impact on the building’s average

annual energy use. However, the effect of individual occupants diminishes with

building size. Additionally, increasing complexity is often associated with other

issues that include onerous data requirements, an increasing likelihood of model

overfitting [14, 26], as well as the introduction of uncertainties that may lead to

identifiability issues during the parameter estimation process [27, 28].
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1.3. Occupancy sensing for BPS

With advancements in occupant sensing and data acquisition technology, oc-

cupant information is becoming increasingly available and more easily accessible.

According to Melfi et al. [29], occupancy can be defined by different occupant,

spatial, and temporal resolution, and occupancy sensing can be categorized as

either explicit or implicit. Implicit occupancy sensing involves the use of existing

building infrastructure to measure occupancy because the interactions between

occupants and the building systems can be used to determine occupancy infor-

mation. On the contrary, explicit occupancy sensing involves the addition of

specific occupancy sensing and detection capabilities and is often synonymous

with high installation and maintenance costs [30]. The different occupancy mon-

itoring and detection technologies include surveys, motion sensors (e.g., passive

infrared (PIR) and ultrasonic detectors), vision-based sensors (e.g., video cam-

eras), and radio frequency (RF) based sensors (e.g., ultra-wideband (UWB),

radio-frequency identification (RFID), Wireless Local Area Network (WLAN)

or WiFi) [31, 32].

The availability of occupant information provide an opportunity to quantify

its contribution towards bridging the performance gap more robustly. Specifi-

cally, the measurements provides a means to empirically test the impact that

various spatial resolutions of occupancy information have in reducing the dis-

crepancies between simulation predictions and real measurements. For instance,

using post-occupancy surveys to quantify OB, Yu, Du, and Pan [33] showed that

the prediction accuracy of the energy model could be improved by integrating

the survey results into the simulation model. Sangogboye [34] showed that using

higher resolution occupancy data does not improve the accuracy of the energy

model that was previously calibrated on lower resolution data. Using data from

16 single occupied private offices, O’Brien et al. [35] concluded that modeling

occupancy from aggregated data tends to suppress inter-occupant diversities.

The authors argue that although the high-level metrics showed that there is no

strong evidence suggesting the suppression of inter-occupant diversities, occu-

pancy profiles generated from aggregated data do not contain the same level of
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diversities observed in individual occupant profile.

1.4. Aims and objectives

Although the characterization of OB’s impact on BPS is not new, a for-

ward or classical modeling approach is typically employed, with most studies

focusing on the modeling methodology of occupants and its resulting impact on

BPS. It is also not evident from existing literature if standardized profiles can

be tuned to provide models that are sufficient for predicting building energy

usage. If standardized profiles are not enough, at what spatial resolution should

occupant information be included in BPS to reduce the gap between simulated

and measured energy use in buildings given an adequate calibration procedure?

Monitoring occupancy at high spatial resolution (i.e., for a large number of

zones) is an expensive endeavor, and there is a need to balance practicality with

accuracy.

In this study, we employ an inverse empirical approach to quantify the ef-

fect of including occupant information on BPS predictive performance. Since

simulation predictions are influenced by many known and unknown factors [36],

Bayesian calibration is used for uncertainty quantification and to construct pre-

diction intervals (PIs). The purpose of modeling and quantifying uncertainties is

to robustly support any claims about the accuracy of the simulation predictions.

Therefore, the objectives of this paper are:

• To evaluate the impact of including different spatial resolutions of occu-

pancy information on model predictive performance.

• To elucidate the impact of base loads on predictive performance. Specif-

ically, we would like to evaluate the improvements in predictive perfor-

mance if the base loads of standardized profiles were calibrated.

• To propose a quantitative measure for the evaluation of simulation pre-

diction intervals against measured data. Current literature does not offer

a suitable metric to assess the quality (length and coverage) of the pre-

diction intervals (PIs) quantitatively. Mean CVRMSE is often used for

6



the evaluation following ASHRAE Guideline 14 [37], which diminishes the

purpose of constructing PIs in the first place [38].

2. Method

A combination of data acquisition/generation, modeling, and calibration will

be used to quantify the effect of occupancy data towards match building energy

simulation models to measured data. As illustrated in Figure 1, the framework

used for the evaluation of different spatial resolutions of occupancy data on the

efficacy of the calibration can be summarized as:

1. Acquire occupant count information, total building energy consumption

data, and the corresponding weather data.

2. Create occupant information at different spatial resolution.

3. Calibrate building energy model with different spatial resolution of occu-

pant information.

4. Evaluate and compare “calibrated” model performance.

2.1. Bayesian Calibration and meta-modeling

The impact that the availability of different spatial resolutions of occupant

presence information would have on the predictive performance of the building

energy model is evaluated within a Bayesian calibration framework. The moti-

vation behind a Bayesian approach is to construct prediction intervals and quan-

tify the uncertainties associated with the predictions of the realizations. The

pioneering work by Kennedy and O’Hagan [39] laid the foundation for Bayesian

calibration that explicitly models uncertainty in model inputs, the discrepancy

between the simulator and the actual physical system, and observation errors

(Equation 1).

y(x) = η(x, t) + δ(x) + ε(x) (1)

where, y(x) is the observed field measurement, η(x, t) is the output of the

building energy simulation given observable inputs x and unknown calibration
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Figure 1: Framework for using real data to evaluate the impact of occupant presence on

building energy simulation. Steps include (1) data acquisition; (2) using WiFi data as a proxy

for occupant presence, create different resolution of occupant information; (3) Apply Bayesian

calibration; and (4) Evaluate and compare the efficacy of the calibration given different spatial

resolution of occupant information.

parameters t, δ(x) is the model bias or inadequacy or discrepancy, and ε(x) (as-

sumed to be i.i.d and normally distributed) is used to model observation errors.

The purpose of including the discrepancy term is to find the posterior distribu-

tion representative of the true but unknown values of the calibration parameters

t. By incorporating model inadequacy δ, we believe that the calibration quality

would improve since the model would better represent the actual physical sys-

tem. Details on the implementation of Bayesian calibration for building energy

simulation can be found in Chong and Menberg [27].

Since the iterative calibration process can be computationally intensive, a
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Gaussian process (GP) emulator or metamodel is used to emulate the energy

model and combine measured data with simulation data [40]. We use a GP

metamodel because it has been shown to provide the highest accuracy com-

pared to other commonly used statistical models despite its longer run-time

[41]. A detailed description of the GP covariance function for η(x, t) and δ(x)

can be found in [42]. Maximin Latin hypercube sampling [43] was used to de-

termine the different values of calibration parameters that would be used for

the construction of the GP metamodel. Hamiltonian Monte Carlo (HMC), a

Markov chain Monte Carlo (MCMC) method, is used to sample from the poste-

rior probability distributions for more efficient sampling and better convergence

[44, 45]. Gelman Rubin statistics (R̂ within 1 ± 0.1) and trace plots of mul-

tiple MCMC chains were used to ensure adequate convergence to a common

stationary distribution.

2.2. Calibrating load profiles/schedules

Internal loads refers to occupants, equipment (plug and process), and light-

ing loads. In this study, we quantify the effects on the model’s predictive per-

formance when the schedule base load fraction is modeled as a calibration pa-

rameter. Calibrating the schedule base load fraction increases the degrees of

freedom for matching the simulation predictions to the measured data. Base

load fraction here refers to the minimum schedule fraction. However, we do not

model every hour value as a calibration parameter because calibrating too many

parameters results in an ill-posed inverse problem. This is due to overparame-

terization that could lead to issues of identifiability [42]. Also, simpler models

generalize better. More calibration parameters mean more complex models that

tend to over-fit the measured data.

Figure 2 shows an illustration of varying the base load fraction of the ASHRAE

90.1 [15] equipment schedule while keeping the schedule’s shape. We do this by

taking advantage of the Energy Management System feature in EnergyPlus to

modify and scale the schedule value during simulation runtime dynamically. Al-

gorithm 1 shows the pseudocode for setting and scaling the equipment schedule

9



fraction based on occupant schedule fraction and the equipment base fraction.

At every simulation timestep t, the equipment schedule value EQUIPt is set

equal to the calibration parameter X (base load fraction) when the building is

not in operation. During operating hours, EQUIPt is set equal to the occupant

schedule fraction OCCt and scaled within the range [X, 1].
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Figure 2: Modifying the base fraction of the load profile/schedule. Top plot shows the default

ASHRAE 90.1 equipment (plug and process) schedule with base fraction of 0.3 (minimum

schedule value). Bottom plot shows the same schedule re-scaled with base fraction of 0.1 and

0.5 respective.
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Algorithm 1: Pseudocode for modifying and scaling the equipment

schedule based on occupant information and equipment base fraction

X = equipment base fraction;

EQUIP = equipment schedule;

OCC = occupancy schedule;

OCCmin = minimum occupancy schedule fraction;

OCCmax = maximum occupancy schedule fraction;

for every simulation timestep t do

if building is not in operation then

EQUIPt = X;

else

EQUIPt = (OCCt −OCCmin)(1−X)/(1−OCCmin) + X;

end

end

2.3. Performance evaluation

Fig. 3 shows the framework used to evaluate model performance. Firstly,

the dataset is split into a training/calibration and testing dataset. Secondly,

Bayesian calibration is applied to the training dataset. Thirdly, EnergyPlus

simulations are run using samples from the posterior estimates obtained from the

Bayesian calibration. Lastly, the performance of the ”calibrated” EnergyPlus

model is evaluated using the testing data. We use two hundred random samples

(i.e., the training data) for the Bayesian calibration. All the remaining samples

were used as a hold-out test dataset for assessing model performance (See Table

2). Since a good match between simulation predictions and measured data on

the training dataset does not necessarily mean that a proper calibration has

been carried out, the test dataset that was not used during the calibration is

used to validate the model’s performance.

Model performance is evaluated using two evaluation metrics, the Cover-

age width-based criterion (CWC) and the coefficient of Variation of the Root-

Mean-Square Error (CV[RMSE]). Each metric provides a different measure of
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Figure 3: Framework for evaluating model performance. The posterior distributions of the

EnergyPlus parameters generated from the Bayesian calibration is used as inputs to the model.

The outputs of the model is then evaluated.

calibration effectiveness and is chosen to provide a robust evaluation of the

uncertainties associated with the simulation predictions.

2.4. Coverage width-based criterion (CWC)

With the presence and accumulation of different sources of uncertainties

[36], the construction of prediction intervals (PIs) for building energy simulation

have often been proposed in literature. PIs are often evaluated based on their

coverage probability without any discussion on how wide the intervals are. Put

differently, studies often looked at whether measurements fall within the PIs.

However, coverage probability by itself is not a good measure because a very high

coverage probability can easily be achieved with PIs that have a broad range

(i.e., a very small and large lower and upper bound respectively). PIs that

are too wide are not useful in practice because they convey little information

about the variations in the measurements. Therefore, evaluation of PIs based

on coverage alone is subjective and can lead to misleading results [46].
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In this study, we use the coverage width-based criterion (CWC) (eq. 2)

[47, 48] to evaluate the PIs. CWC assesses the quality of the PIs based on both

their coverage and their width through a combination of the Prediction Inter-

val Coverage Probability (PICP) and the Prediction Interval Normalized Mean

Width (PINMW) respectively. PICP (eq. 3) measures number of measurements

that fall within the PIs while PINMW (eq. ??) provides an indication of the

normalized average width of the PIs. Narrow PIs are more informative about

measurement variability. However, PIs that are too narrow may result in mea-

surements falling outside the PIs. Therefore, using CWC provides an evaluation

of the PIs from these two conflicting viewpoints.

CWC = PINMW + γ(PICP )e−η(PICP−µ) (2)

where γ(PICP ) = 0 when PICP ≥ µ and 1 otherwise. µ is the nominal

confidence level and its value can be determined based on the confidence level

(1− α)% associated with the PIs. η is a scaling factor for distinguishing PICP

violations from µ. Together, µ and η are hyperparameters used to control the

location and the amount of CWC jump. In this study, η and µ are set to 50

and 0.65 respectively.

PICP =
1

ntest

ntest∑
i=1

c
(α)
i (3)

PINMW =
1

ntest ·R

ntest∑
i=1

(U
(α)
i − L(α)

i )2 (4)

where ntest is the number of samples in the test dataset; if yi denotes the

ith observed value, then ci = 1 if yi ∈ [L
(α)
i , U

(α)
i ], otherwise ci = 0; Li(α) and

U
(α)
i are the lower and upper bounds of the ith PI with a confidence level of

(1−α)%, respectively; R is the range of the test dataset. Normalizing by R (eq.

4 allows us to compare the PIs generated from different datasets and calibration

methods.

The intuition behind the CWC is to exponentially penalize violations of the

preassigned where PICP ≤ µ, since it is a key feature that determines the
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correctness of the constructed PIs. When PICP is around µ, the CWC metric

tries to compromise between informativeness (PINMW) and correctness (PICP)

of the PIs.

2.4.1. CV(RMSE)

The coefficient of Variation (CV) of the Root-Mean-Square Error (RMSE)

(eq. 5) is commonly used to assess how well the the calibrated energy simulation

describes the measured data, and is used in this study to provide an indication

of how well the mean of the posterior predictions matches the measured data.

Relative to monthly and hourly calibration data, ASHRAE Guideline 14 [37]

specifies a threshold of 15% and 30% respectively.With probabilistic predictions,

prediction performance is evaluated using the mean and 95% confidence inter-

val of the CV(RMSE) computed using the MCMC samples from the posterior

predictions.

CV (RMSE) = 100×
√∑ntest

i=1 (yi − ŷi)2 / (ntest − 1)

ȳ
(5)

ŷi =
1

m

m∑
j=1

ŷi,j (6)

where ntest is the number of samples in the test dataset; ŷi denotes the mean

of the ith predictions (eq. 6); ȳ denotes the mean of the ntest measured values

that forms the test dataset; m is the number of MCMC samples in the posterior

predictions of ŷi.

3. Case study

3.1. Building description

The building case study is an actual mixed-use building (hereinafter referred

to as Building B) located at the National University of Singapore in Singapore.

It is a six-story building with a total floor area of 5,527m2. The HVAC system is

a VAV system served by central district water-cooled chillers. Given Singapore’s
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tropical climate, no heating is required, and cooling is provided throughout the

year to maintain thermal comfort.

Nine months of measured data at an hourly resolution from 1 Apr 2018 to

31 Dec 2018 was collected and consists of the following:

• Total building electricity energy consumption.

• WiFi connection counts for each floor of the building. WiFi connection

counts have been shown in previous studies [29, 49] to be a suitable esti-

mate of the hour to hour variations in the number of building occupants.

Therefore, it is used in this study as an implicit estimate of occupancy

profiles or schedules.

• Actual Meteorological Year (AMY) weather data from the Singapore Changi

airport weather station (WMO #486980).

3.2. Virtual experiments

Using data from the case study building, four virtual experiments A, B, C,

and D are defined to evaluate the impact of occupant presence on the calibra-

tion efficacy of building energy simulation and are summarized in Table 1 with

descriptions as follows.

Case A Default ASHRAE 90.1 occupancy, lighting and equipment load sched-

ules.

Case B Default ASHRAE 90.1 occupancy, lighting and equipment load sched-

ules. Equipment base load fraction is modeled as an uncertain parameter

(Fig. 2) that is calibrated against hourly whole building energy usage

data.

Case C Default ASHRAE lighting schedule. Whole building aggregated oc-

cupant information is used to derive both building aggregated occupancy

and equipment load schedules. Equipment base load schedule fraction is

modeled as an uncertain parameter that is calibrated against hourly whole

building energy usage data.
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Case D Default ASHRAE lighting schedule. Floor aggregated occupant infor-

mation is used to derive the corresponding occupancy and equipment load

schedules for each floor. Equipment base load schedule fraction for each

floor aggregated schedule is modeled as an uncertain parameter that is

calibrated against hourly whole building energy usage data.

Table 1: Summary of experiments used to investigate the effect that different spatial resolution

of occupant presence has on the calibration efficacy of building energy simulation.

Case Occupant data source
Occupant data

resolution

Calibrates

equipment base load

A ASHRAE 90.1 None No

B ASHRAE 90.1 None Yes

C WiFi Aggregated by building Yes

D WiFi Aggregated by floor Yes

Table 2 summarizes the data, priors, inputs and output used for the Bayesian

calibration. To ensure a fair comparison, each case was optimized by conducting

a grid search of the Gaussian process hyperparameters on the training dataset

and selecting the hyperparameters that gave the lowest CWC (eq. 2) values.

The calibration is carried out against hourly building energy consumption data.

Table 2 lists the boundary conditions, calibration parameters, GP hyperparame-

ters, and the corresponding prior probability distributions used for the Bayesian

calibration. To ensure that the diversity factors generated based on the WiFi

connection counts are correctly applied, we sum the hourly total occupant count

for the building and checked that they are the same across the different spatial

resolutions.
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Table 2: Data description, priors, inputs and output for Bayesian calibration using the real

dataset (Building B).

Description

Building

Mixed-use building located in Singapore

Data collection period 1 Apr 2018 to 31 Dec 2018

Weather Singapore Changi Airport WMO #486980 (AMY)

No. of samples
training: 200

testing: 6304

Observed output y(x)
Total building energy consumption

(excluding plant side cooling consumption)

Observed Inputs x

Outdoor dry-bulb air temperature [◦C]

Outdoor relative humidity [%]

Direct solar radiation [W/m2]

Occupant schedules [−] (see Table 1)

Calibration Parameters t†

Occupant density [m2/person] ∼ U(15, 23)

Lighting power density (LPD) [W/m2] ∼ U(3, 20)

Equipment power density (EPD) [W/m2] ∼ U(3, 30)

Base load ratio (EPD) [−] ∼ U(0.05, 0.6)

Gaussian process

hyperparameters

λη ∼ Gamma(a = 10, b = 10)

λδ ∼ Gamma(a = 10, b = 0.1)

ρη, ρδ ∼ Beta(a = 1, b = x)

λε ∼ Gamma(a = 10, b = y)

argmin(x,y)CWC‡

x ∈ (0.1, 0.3, 0.5) and y ∈ (0.01, 0.05, 0.1)
† For case D (total number of occupants per floor is approximated using WiFi connection count data), the power

density and base load of each floor is modeled as a random variable that is calibrated. For a five storey building,

this means a total of ten calibration parameters for EPD and each corresponding base load. Note that we model

occupant density as a calibration parameter. This is because, although WiFi data acts as a good proxy for

occupant hourly variation/schedule, it is not a good estimate for actual occupant count. ‡ optimized by conducting

a grid search on the training dataset and selecting the x and y values that gave the lowest CWC (eq. 2) values. A

detailed explanation of the GP hyperparameters for Bayesian calibration can be found in Chong and Menberg [27].
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4. Results

Table 3 summarizes the results of the four virtual experiments using the

testing data. CWC and CV(RMSE) were computed to provide a quantitative

assessment and comparison of the predictive performance at different resolution

of occupant information with both synthetic and real data (see Table 1).

Table 3: Performance of prediction intervals for the eight case studies to 2 significant figures.

Metrics
Case

A B C D

CV(RMSE) 37 29 24 26

CWC 9.7× 106 1.3 0.16 0.20

PICP 0.33 0.65 0.67 0.71

PINMW 0.11 0.17 0.16 0.20

As illustrated in Figure 4, the quality of the prediction intervals improves

when occupant data is included in the calibration. This is indicated by lower

CWC and CV(RMSE) values in cases C and D relative to A and B. Specifically,

compared to default ASHRAE 90.1 schedules (case A), including occupancy

data (cases C and D) shows a 11% - 13% reduction in mean CV(RMSE) and an

exponential improvement in CWC. The CWC measure (Eq. 2) is based on PICP

(prediction coverage) and PINMW (prediction width). Its hyperparameters (η

and µ) were chosen so that PIs with PICP ≤ 65% are heavily penalized. The

considerably improvements in the CWC measure is mainly brought about by an

increase in prediction coverage (PICP). From Table 3, it can be observed that

including occupant information increases PICP by more than 30% (compared

to using default ASHRAE 90.1 schedules).

A comparison of the simulation PIs with the measured data reveals that

with the default ASHRAE 90.1 schedules, the calibrated model is unable to

capture the base loads. Figure 6 illustrates this observation using case A as an
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Figure 5: Coefficient of Variation of the Root-Mean-Square Error (CV[RMSE]) values for the

four cases A-D (described in Table 1).

example. There are two distinct observations, (1) the measurements fall outside

the PIs during non-operating hours (base load), and (2) a significant mismatch
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between the PIs and the measurement results if the building is assumed to be in

operation when it is not. Evidently, a higher degree of freedom when tuning the

ASHRAE 90.1 schedules and the correct assumptions concerning the building’s

operation is necessary. We test this hypothesis with case B where the base load

schedule fraction is modeled as a calibration parameter (see Section 2.2 for the

methodology).
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Figure 6: Weekdays, Saturday, and Sunday box-plots of simulation predictions (blue box-

plots) for Case A that uses the default ASHRAE 90.1 schedules for the calibration against

hourly building energy consumption measurements (orange box-plots).

By calibrating the base load schedule fraction, CWC values were substan-
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tially reduced (Figure 4) due to significant improvements in PI coverage of the

measurements (approximately 30% increase in PICP as shown in Table 3). The

mean CV(RMSE) were also reduced by 8% compared with case A (Figure 5).

Notably, going from default ASHRAE 90.1 schedules (case A) to adding base

load schedule fraction as a calibration parameter (case B) to including build-

ing aggregated occupancy data (case C), we observe that by modeling the base

load fraction as a calibration parameter, the performance gap between including

and not including occupancy data diminishes. Specifically, the CWC values are

comparable when comparing cases B and C. Nonetheless, including building ag-

gregated occupancy shows an additional 5% reductions in CV(RMSE) (Figure

5).

Providing floor aggregated occupancy (case D) does not improve the quality

and accuracy of the simulation PIs. As shown in Figures 4 and 5, compared to

case C, case D has a slightly higher CV(RMSE) and CWC. The deterioration in

CWC is because the PIs for case D had a broader range on average (PINMW)

while having comparable PICP compared to case C. This indicates that case D

has comparatively higher uncertainties in its posterior predictions while having

similar coverage of the measured data. A possible explanation for the worsened

CV(RMSE) and CWC is that the diversity factors from occupancy data pro-

vided at the floor level do not add more information (as compared to building

aggregated occupancy information) towards the prediction of total building en-

ergy consumption. Additionally, calibrating the power densities and base load

schedule fraction of each floor may result in too many calibration parameters

and a overly complex model.

Surprisingly, CV(RMSE) of case D is between that of cases B and C. Fol-

lowing the principle of parsimony, case B that does not rely on any occupant

data and has fewer lesser calibration parameters might be preferred in scenarios

where a CV(RMSE) of 29% is deemed acceptable.
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5. Discussion

5.1. Comparing ASHRAE Schedule to using occupancy data

By substituting ASHRAE 90.1 reference schedules with building aggregated

occupancy data, the deviation between predicted energy consumption and mea-

sured data were reduced by 13%. The improvements in prediction accuracy

comes as no surprise since occupancy diversity factors was shown to differ by

as much as 46% in average day profile peaks for private offices and about 12%

reduction for open plan office spaces as compared to ASHRAE 90.1 reference

schedules [16]. Variations in occupant related loads and schedules were also

shown to have an significant impact on total building predicted energy usage

[10]. Using an actual building, we showed that even with an adequate calibra-

tion methodology, CV(RMSE) stayed above the hourly threshold of 30% set

by ASHRAE Guideline 14 [37] (Figure ??). By including occupancy informa-

tion, this deviation was reduced to 29% and within ASHRAE Guideline 14 [37]

definition of a calibrated model.

Compared to the existing literature on occupant behavior, a noticeable dif-

ference in this study lies in applying Bayesian calibration to quantify the un-

certainties in the simulation predictions. Additionally, the quality of the con-

structed prediction intervals (PIs) were evaluated using the simple coverage

width-based criterion (CWC) that evaluates the PIs for its correctness (cov-

erage of PIs) and its informativeness (width of PIs). As shown in Figure ??,

including occupancy information exponentially improves the quality of the con-

structed prediction intervals (PIs). Specifically, the PIs from a calibrated energy

model where the schedules were based on occupancy data were more theoret-

ically correct with more than 30% of the measured data being covered by the

constructed PIs. Interestingly, with case A, it was shown that a CV(RMSE) of

37% can be achieved even though the constructed PIs only covered about 30% of

the measured data. This observation provides evidence that despite calibrating

for internal load (people, lighting, and equipment) densities, using fixed a priori

reference schedules may result in simulation predictions in which the correctness
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of the constructed PIs is questionable.

5.2. Modifying ASHRAE schedule

Although we show that using ASHRAE reference schedules provide PIs with

inadequate coverage of measured building energy usage, the question is whether

these reference schedules can be adjusted to ensure sufficient accuracy and cor-

rectness. Accordingly, we show that increasing the calibration degree of freedom

by modeling of schedule base load fraction as a calibration parameter reduces

the performance gap with comparable correctness in the constructed PIs than

if occupancy data was included. However, the mean CV(RMSE) remains 5%

larger. This suggests that if the peak and base loads can reasonably estimated,

the ASHRAE reference schedules might not be as detrimental as purported

when used in BPS for predicting building energy usage.

To date, fixed a priori reference schedules represent the lowest level of com-

plexity [14]. Schedules are also easy to include with implementation-ready in-

terfaces in existing energy simulation software. Comparatively, more complex

probabilistic and agent-based models have been proposed to better model occu-

pant presence and their interaction with various energy-related components in a

building [2]. These models in an attempt to better represent occupancy in BPS

often requires significant amount of information in reality, which may not always

be available especially during the design stage. Consequently, prediction perfor-

mance may decrease if the uncertainties from estimating the input parameters

exceeds the benefits of a reduced model inadequacy or bias resulting from an

increase in model complexity [26]. Furthermore, simple models often generalize

better and are easier to implement, making them more suitable during design.

The question then remains whether a reference schedule with its base and

peak loads adjusted serves as a good enough abstraction of actual occupant

presence and their interaction with the building systems. Compared to the

more complex probabilistic and agent-based occupancy models, would adding

additional degrees of freedom to the reference schedules provide better general-

ity and still achieve the predictive performance needed to meet the simulation
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objectives? In future work, investigating this research question might prove

important.

5.3. Model complexity, inputs, outputs, and simulation objectives

Fig. 7 represents the trade-offs between model bias and parameter uncer-

tainty, drawing from the results of this study; ongoing discussions to develop

parsimonious building energy models [26, 14, 50]; and the relevant literature

that delves into the effects on model performance with varying model complex-

ity, data quality, and the simulation objectives [51, 52, 53, 54].
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Figure 7: Trade-offs between parameter uncertainty and model inadequacy with increasing

model complexity, and the corresponding effects due to the simulation objectives, model inputs

and outputs, and calibration parameters.

Increasing the resolution from building aggregated occupancy data to floor

aggregated occupancy data showed a 2% increase in prediction error. A re-

cent study by Sangogboye et al. [34] reported similar findings of an increase in

prediction error from 19.72% to 21.03% when switching from average building
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aggregated occupancy data to detailed zonal level occupancy data. Addition-

ally, we showed in this study that increasing the spatial resolution increased the

range of the posterior PIs on average, indicating an increase in prediction uncer-

tainties. This is because using higher resolution occupancy data increases the

number of model parameters and thus the model’s complexity as compared to

an abstracted version where similar parameters are lumped into a single build-

ing aggregated parameter. An example is modeling the lighting power densities

for each space and subspace compared to a simplified approach that models

the building aggregated lighting power density. Depending on the outputs or

responses that the simulation model is calibrated against, increasing the num-

ber of calibration parameters can result in issues of identifiability as a result of

overparameterization [27].

The findings from this study suggest that although complex models pro-

vide a better representation of the actual physical building systems and sub-

systems, they may not be useful if a comprehensive dataset is not available to

constrain each pathway. This is because the model’s performance depends on

(1) model complexity, (2) simulation objectives, and (3) data informativeness.

A more accurate representation of building systems and sub-systems requires

more knowledge that could come from informative data streams, detailed draw-

ings, and specifications because of the increasing number of model parameters.

Additional complexity inadvertently leads to an increase in the number of un-

certain parameters that need to be calibrated against an often limited amount

of data streams. Therefore, it is crucial that modelers identify the appropriate

level of complexity for a given dataset and simulation objective (question of in-

terest). As suggested by [55], simulation is no longer the art of performing high

fidelity simulations but rather performing the right type of virtual experiment

with the right model. The effects of model complexity and structure, simulation

objectives, and data informativeness on building performance simulation remain

unanswered at present and is an important issue for future research
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6. Conclusion

The present study was designed to determine the effect of occupancy data on

the building energy simulation model’s predictive performance. To robustly sup-

port claims about improvements in predictive performance, Bayesian calibration

is used to construct prediction intervals (PIs) and quantify any associated un-

certainties. We also propose using the coverage width-based criterion to better

evaluate the quality of the PIs.

The more obvious finding to emerge from this study is that compared to

ASHRAE 90.1 reference schedules, including occupancy information (in the form

of hourly profiles) improves the quality and accuracy of the PIs.

One of the more significant findings revealed in this study is that increasing

the calibration degree of freedom by calibrating the schedule base load fraction

reduces the gap between using ASHRAE reference schedules and occupancy in-

formation substantially. The finding suggests that with a reasonable estimation

of the peak and base loads during design, the ASHRAE reference schedules

might not be as detrimental as purported when the simulation objective is to

predict total building energy usage.

The second significant finding was that a higher spatial resolution of occu-

pancy data might result in poorer predictions with larger uncertainties of total

building energy usage than whole building aggregated occupancy data. The

finding supports the idea that additional model complexity leads to an increase

in parameter uncertainty. If data that is informative about the simulation objec-

tive is not available to constrain each pathway, it would inadvertently lead to an

increase in overall uncertainty despite a reduction in model bias or inadequacy

arising from more detailed modeling.

If applied to more buildings, the outcome of this study would provide a basis

for quantifying occupancy uncertainty during design, thus preempting the per-

formance gap through better quantification of the variability in the predictions.
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