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• Framework for efficient multivariate occupant-centric building controls was proposed.
• Uses deep reinforcement learning and considers personal thermal comfort and occupancy.
• Proposed simple personal comfort model designed for practical building controls.
• Pre-trained virtually before online deployment in a real-world office.
• Reduced cooling energy by 14% and improved thermal acceptability by 11%.
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A B S T R A C T
Reinforcement learning (RL) has been shown to have the potential for optimal control of
heating, ventilation, and air conditioning (HVAC) systems. Although research on RL-based
building control has received extensive attention in recent years, there is limited real-world
implementation to evaluate its performance while keeping occupants in the loop. Additionally,
many HVAC systems consist of multiple subsystems, but conventional RL algorithms face
significant challenges when dealing with high-dimensional action spaces. This study proposes
a practical deep reinforcement learning (DRL) based multivariate occupant-centric control
framework that considers personalized thermal comfort and occupant presence. Specifically,
Branching Dueling Q-network (BDQ) is leveraged as the learning agent to efficiently solve
the multi-dimensional control task, and a tabular-based personal comfort modeling method is
applied that is naturally integrated into human-in-the-loop operations. The BDQ agent is pre-
trained in a virtual environment, followed by online deployment in a real office space for 5-
dimensional action control. Based on the actual deployment and real-time comfort votes, our
results showed a 14% reduction in cooling energy and an 11% improvement in total thermal
acceptability.

1. Introduction
With a significant increase in building energy consumption, research on HVAC related energy conservation

measures has become essential. In 2020, the residential and commercial sectors were responsible for approximately
40% of primary energy consumption and 35% carbon emissions in the U.S. [1]. Similar statistics were provided by
the European Commission [2] for most EU countries. According to Fernandez et al. [3], commercial buildings have
the potential to save an average of 29% in energy consumption by installing the advanced control technologies that
are available today. The researchers quantified the saving potentials by investigating the improvements resulting from
applying 34 different building control measures to 14 distinct building types in 16 climate zones across the U.S. In
addition, while buildings are designed to provide a comfortable space for occupants, a post occupancy study revealed
that over 50% of the 52,980 occupants were dissatisfied with their indoor environment [4]. Therefore, it is an ongoing
challenge to utilize the advanced control and operation techniques in practical application to attain desirable building
performance [5].

Leveraging increasingly affordable smart metering technologies, a growing number of studies investigated how
buildings can take advantage of occupant-centric controls and the Internet of Things (IoT) to accommodate occupants’
comfort and improve energy efficiency [6]. Based on existing literature on occupant-centric controls, the reported
median energy savings and comfort improvement was 22% and 29.1%, respectively [7, 8]. Although many advanced
building control techniques have been developed over the past decade, it remains challenging due to the high-order
nonlinearity of dynamics and the complexities resulting from numerous disturbances, constraints, and uncertainties
in buildings [9]. Examples of advanced building controls include model predictive control (MPC) [10, 11], linear
quadratic regulator [12], and learning-based control [13, 14]. More recently, there has been increasing interest in
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reinforcement learning (RL) because of its adaptability and flexibility [15]. More importantly, since RL algorithms
generally do not need to analyze the building dynamics at each control step, they provide significantly more efficient
run-time control than those optimization-based controllers, which opens up the possibility of applying RL-based
controls to solve complex building automation problems [16].
1.1. Multivariate Building Controls

Existing studies focusing on the optimal control of HVAC systems typically consider a single control variable,
such as the zone’s temperature setpoint or supply airflow rate. However, modern HVAC systems may consist of more
than one subsystem. Consequently, there is a need to control multiple variables simultaneously. Notable examples are
radiant panels with dedicated outdoor air system (DOAS), mixed-mode ventilation systems, ceiling fans augmented
air-conditioning, and personalized ventilation with ambient fan coil units. Independent univariate local controls are
typically applied to operate each subsystem in these HVAC systems. However, it is necessary to ensure communication
and cooperation between them to reach the full potential. Failing to consider possible subsystem interactions when
developing a central control strategy could result in sub-optimal performance [17].

Multivariate control problems can be solved with multi-input-multi-output (MIMO) controllers. There are extensive
studies on applying the self-tuning fuzzy PID (proportional-integral-derivative) or fuzzy PI-PD based control to the
MIMO HVAC systems [18]. While these controllers are effective and robust, they are often not optimal because the
predictive information is not considered and the adaptive adjustment ability is limited [19]. MPC is also a viable control
strategy for MIMO systems owing to its capability of handling multivariate interactions and constraints. However,
developing an efficient model for online optimization is not trivial [20]. Creating a model that accurately reflects system
dynamics can also be challenging due to the ill-posedness of calibrating these models [21]. More recently, multi-agent
RL algorithms were applied to the building domain for multi-dimensional action controls. Examples include multi-zone
building control [22, 23] and microgrid optimization [24, 25]. In particular, some studies employed clustering-based
methods to enhance the learning efficiency and stability of the agents with extremely large state-action spaces [26].
However, in these multi-agent systems, each agent typically acted as a univariate controller and was responsible for one
action dimension, and multiple agents worked together to complete control tasks. Although multi-agent RL is capable
of multivariate building controls [27], its scalability remains challenging due to the need for many heterogeneous agents
[28]. Hence, a more practical and intuitive approach to achieving scalability is implementing a single-agent multivariate
control in individual rooms and extending it to multiple agent settings to control the whole building jointly.

Leveraging advances in deep learning and RL, it is computationally tractable to learn policies in high-dimensional
and continuous action spaces using deep function approximators [29]. Few studies investigated single-agent mul-
tivariate RL control in the field of building HVAC controls. Sun et al. [30] implemented a Lagrangian relaxation
based method to co-optimized the fresh air unit and fan coil unit. Ding et al. [31] proposed a DRL-based framework
that optimizes the control of four building subsystems (HVAC, window, blind and lighting). As high-dimensional
action space in zone level control become increasingly important in buildings, more investigation is needed on how to
efficiently implement multivariate HVAC control with single-agent algorithms, and how to scale them to multi-zone
building using fully cooperative multi-agent methods.
1.2. Implementing DRL-based HVAC Control

Wei et al. [16] first applied DRL algorithms to HVAC controls in 2017. Using simulation, they showed that deep
Q-network (DQN) outperformed the baseline rule-based approach and conventional Q-learning in building energy
cost and temperature violation. Since then, DRL-related research has been increasingly applied in the field of building
controls [32]. However, practical implementations of DRL-based building controls remain scarce, often being limited
to domestic water heating [33] and lighting [34] control applications. Actual implementations are essential because
many real-world challenges are often not reflected in virtual environments [35]. For instance, DRL is notorious for
requiring large amounts of training data to achieve plausible results, making the learning process very inefficient in
real-world operations [36, 37]. Additionally, RL agents learn by exploring new actions, which will inevitably lead to
undesirable outcomes when the algorithm performs sub-optimally [38]. Challenges encountered during the training
process may also be overlooked in simulation-based studies because they usually focus on the final control performance
(e.g., energy savings). Lastly, the high uncertainties in using actual thermal comfort votes [39] and the prevalence of
faulty equipment and sensors in actual buildings [40, 41] are often not considered in a virtual environment.

Few studies demonstrated the improvements in control performance from using DRL in real buildings. Zhang et al.
[42] pre-trained an A3C (Asynchronous Advantage Actor Critic) based agent with a calibrated building energy model
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before deployment in an actual office space to avoid inefficient learning. However, this algorithm required 3.5 million
interaction steps (33 years in simulation) to achieve the satisfactory performance. Chen et al. [43] adopted a novel
differentiable MPC policy in place of a generic neural network in the DRL. The pre-trained policy was directly deployed
in a conference room for 3 weeks and the results showed that the proposed approach saved 16.7% of cooling demand
compared to the existing PID controller. Although this approach was much more sample-efficient than conventional
DRL algorithms, it assumed a linear model for the system dynamics, which may not extrapolate to more complex
problems. Qiu et al. [44] optimized chiller performance by employing a chilled water reset strategy with a hybrid
model-free RL. Specifically, the expertise knowledge was incorporated to dynamically narrow down the action space.
The proposed method was compared with expert manual control in a real central chiller plant.

In the context of using DRL for occupant-centric controls, wearable devices were often utilized to measure the
physiological data. For example, Zhang et al. [45] used double deep Q-learning (Double DQN) to control the ceiling
fan speed for 14 participants in an experiment room while considering their biological responses (wrist temperature,
heart rate, and RR interval) and subjective thermal comfort votes in the control loop. Jung et al. [46] reduced thermal
discomfort by 10.9% without increasing energy consumption using a one-dimensional convolutional neural network-
based DRL algorithm that considers occupant activity from the smart wristband. While these studies showed that the
thermal comfort can be maximized through the physiological information, they typically required the development of
highly personalized comfort models prior to the control deployment. Consequently, occupants need to participate in
dedicated comfort experiments for a few hours to collect the high granularity physiological data, which is difficult to
achieve in practice.
1.3. Demand for Occupant-centric Comfort Management in RL-based Control

Instead of controlling the indoor environment at a constant and fixed setpoint temperature, occupant-centric control
intends to provide personalized comfort conditions based on occupants’ feedback [47]. Studies have shown that
conditioning the micro-environment of each occupant based on the matching personal comfort model often leads to
co-benefit of energy savings and occupants satisfaction [48, 49]. A personal comfort model is used to predict the thermal
comfort response of an individual rather than the average response of a large population [50]. Although the predicted
mean vote and predicted percentage of dissatisfied (PMV-PPD) model is widely recognized, it is an aggregated model
and has been shown to have poor predictive performance if applied to individuals or a small group of occupants [50, 48].
Cheung et al. [51] analyzed the accuracy of PMV-PPD model using the ASHRAE global thermal comfort database
II, and found the overall accuracy was only 34%. Additionally, the reliable range of the PMV is narrow, and it is
also difficult and expensive to obtain full measurements of all input variables [52, 53]. However, most HVAC control
studies still use the PMV or pre-defined temperature ranges because the focus is often on achieving energy savings,
and occupant satisfaction is usually not a primary consideration [54]. It has been shown that using the temperature as a
reference for HVAC system operations is inadequate [55]. Thanks to the recent advancements in the occupant behavior
sensing and modeling, high-accuracy occupancy presence detection technologies have become readily available [47].
Therefore, to have a tangible impact on both the energy efficiency and occupants satisfaction in buildings, more research
is needed to integrate the personalized thermal comfort modeling into actionable RL-based control frameworks.
1.4. Research Gaps and Objectives

Two major gaps are identified in the existing literature.
1. Past research on the optimal HVAC control typically consider a single control variable, which cannot fully

exploit the potential of HVAC systems comprising multiple subsystems. Dealing with high-dimensional action
spaces is nontrivial because the computational cost for conventional DRL algorithms grows exponentially with
the number of action dimensionality.

2. Efforts to incorporate personalized thermal comfort modeling into RL-based HVAC control loop have been
limited, especially for real-world integration. Existing RL-based occupant-centric control studies typically
rely on the personalized physiological data collected from dedicated comfort experiments prior to the control
deployment, which limits their application and scalability.

Therefore, this study proposed a new DRL control framework to fill the two knowledge gaps in an experimental-
based study. The objective of this study is to develop a DRL-based multivariate control framework for building HVAC
systems while considering personal thermal comfort and occupant presence. To that end, we applied a novel action
branching architecture to efficiently solve control problems in multi-dimensional action spaces. A simple tabular-based
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personal comfort modeling method is also proposed, which fits naturally into human-in-the-loop building operations.
To demonstrate the control performance, the proposed DRL agent is implemented in an actual office building with
real-time occupant comfort votes.

2. Methodology
This section presents the technical details used in the proposed multivariate DRL-based control framework.

2.1. Description of the DRL Control Framework
As shown in Figure 1, there are three key components in the proposed DRL control framework, which we elaborate

in the subsequent sub-sections:
• BDQ-based agent (Section 2.2).
• Personalized thermal comfort matrix (Section 2.3).
• Virtual environment for RL pre-training (Section 2.4).
Broadly speaking, the implementation of RL-based control in actual buildings consists of 2 major tasks: (1) pre-

training and (2) online learning. In the first task, the DRL agent is pre-trained offline in a virtual environment to ensure
a plausible control performance and mitigate sub-optimal or unsafe actions [38]. We created the virtual environment
with Modelica Buildings Library [56] and used the building’s historical weather and operating data to calibrate the
simulation model. A one-time preliminary comfort survey and the PMV model were used to initialize the personalized
comfort matrix for the agent’s pre-training.

In the second task, the pre-trained agent would directly control the actual HVAC systems. During this process,
the agent continuously refined its control policy by learning from the real-time feedback from the HVAC system
and occupants. The daily agent online training was conducted at the end of the day (i.e., unoccupied hours). The
personalized comfort matrix was updated daily based on the comfort votes, and the simulation model was also
periodically re-calibrated with the latest building operating data.

Figure 1: Block diagram of the proposed multivariate DRL control framework.
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2.2. Multivariate Control with BDQ-based Agent
Due to the �curse of dimensionality�, conventional DRL algorithms, such as DQN, are limited to problems with

discrete and low-dimensional action spaces [28]. Yang et al. [57] showed that a univariate batch Q-learning agent
required three years of training data to outperform a rule-based controller in a low exergy building. As the number
of action variables increases, the training time duration will signi�cantly increase because the number of sub-actions
that need to be explicitly represented grows exponentially with the number of action dimensions [58]. Hence, this
study implemented a novel action branching architecture to address the intractable training time in high-dimensional
environments using conventional DRL algorithms.

2.2.1. Reinforcement Learning
Reinforcement learning is a branch of machine learning that enables an agent to interact with an environment and

learn what actions to take based on the observed state of the environment. The agent learns by trial and error and is
rewarded for desired behaviors and penalized for undesired behaviors [59]. In the context of HVAC controls, the RL
agent refers to the controller, and the environment is the building or its virtual representation. The optimal control
problem is modeled mathematically as a Markov decision process (MDP), as shown in Figure 2.

Figure 2: Standard agent-environment interaction.

When executing a control task, a closed-loop process is performed as follows: At each time step, an agent observes
a stateSt = s representing the current situation of the environment. Following its control policy� , the agent takes
actionAt = � at timet, i.e., � .s/ = � for a deterministic policy. In response to the action, after one time step, i.e., at
time t + 1, the agent �nds itself at a new stateSt+1 = s¨ and receives a rewardRt+1 = r from the environment. Note
that in DRL, the policy is commonly approximated by a deep neural network (DNN). The aim of the agent is to �nd an
optimal policy that maximizes the discounted accumulated rewards

³ Ø
t  tRt by exploring di�erent control policies.

 Ë [0;1/ is the discount factor.

2.2.2. Branching Dueling Q-network
This study leveraged the Branching Dueling Q-Network (BDQ), a branching variant of the Dueling Double Deep

Q-Learning Network [58], to tackle multivariate control problems.

ˆ Double DQN In the standard DQN, the target network parameters are updated to re�ect desired changes in
Q-Values. However, it has been revealed that the target network is most likely to overestimate Q-Values since
the same estimator is used to select and evaluate actions, leading to sub-optimal and unstable training [60]. The
idea of the double DQN is to reduce overestimations by using two independent Q-Values estimators for action
selection (on the online network) and action evaluation (on the target network). This algorithm not only yields
more accurate value estimations but also �nds better policies.

ˆ Dueling DQN The key idea behind the dueling architecture relies on the representation of the Q-Value of a
state-action pairQ.s; a/ as two streams: the state-valueV .s/ and the advantages for each actionA.s; a/. As
shown in Equation 1, the estimates of the value function are computed as the value of a given state and the value
of the advantage of taking a particular action in this state, compared to all other possible actions in this state
[61]. However, Equation 1 cannot be directly used because it is unidenti�able. A common practice to address this
issue it to force the advantage estimator to be zero at the best action for that state. Consequently, the maximum
predicted advantage can be subtracted from the function as shown in Equation 2. Many studies have suggested
that the maximum operator in Equation 2 can be replaced with an averaging operator for better performance
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[58, 62]. Implementing the dueling architecture often leads to signi�cant improvements in learning e�ciency
[61].

Q.s; a/ = V .s/ + A.s; a/ (1)

Q.s; a/ = V .s/ +
0

A.s; a/ * max
a¨ ËA

A.s; ä /
1

(2)

Figure 3 illustrated the action branching network architecture for the proposed BDQ agent. The shared decision
module consists of multilayer neural networks, which extract features from the input state. The latent representations are
then decomposed into the state value and state-dependent action advantages for each subsequent independent branch.
The latter is distributed on the several action branches, and each branch is responsible for controlling one dimension of
the action. The Q-values for each action dimension is calculated by combining the state value and action advantages
through a special aggregation layer. Finally, the argmax function is used to concatenate the joint-action tuples from
sub-action branches. This network architecture achieves a linear increase in the number of network outputs by allowing
independence for each action dimension, which is particularly e�cient for multivariate tasks.

Figure 3: Visualization of the action branching network architecture for the proposed BDQ agent. The gray rectangles
denote the weights of the fully connected neural network layers. The advantage dimension and Q-value dimension is also
indicated.

Formally, for an action dimensiond Ë ^1; :::; N` , we discretize the it inton feasible sub-actions. A key concept of
the dueling network architecture is to explicitly decouple the state value and the action advantages in deep Q-networks
to enhance the learning e�ciency and robustness [61]. Consequently, the individual branch's Q-value at states when
decisionad Ë A d is taken can be expressed by:

Qd.s; ad/ = V .s/ +

`
r
r
r
p

Ad.s; ad/ *
1
n

É

a
¨
dËA d

Ad.s; äd/

a
s
s
s
q

(3)

WhereV .s/ denotes the common state value computed by the shared decision module andAd.s; ad/ denotes the
corresponding state-dependent action advantage. The temporal-di�erence (TD) target for BDQ agent can be calculated
as:

y = r + 
1
N

É

d

Q*
d

`
r
r
p
s¨; argmax

a
¨
dËA d

Qd.s¨; a¨
d/

a
s
s
q

(4)

Wherer is the immediate reward after taking sub-actionad;  is the discount factor; andQ*
d is thedth branch of

the target networkQ* , which will be periodically updated with the latest weights from the online networkQ. Let D
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denote the replay bu�er and a denotes the joint-action tuple (a1; a2; :::; aN ), the weights of the BDQ agent are iteratively
adjusted by minimizing the loss function:

L = E.s;a;r;s̈ /í D

L
1
N

É

d

�
yd * Qd.s; ad/

� 2

M

(5)

2.2.3. BDQ-based Agent Training
The pseudocode for detailed training process of the proposed BDQ-based agent is outlined in algorithm 1. We

considered each day as an episode.

Algorithm 1: The training process of the BDQ-based agent for hybrid HVAC system

Randomly initialize the weights� of the online networkQ and the target networkQ* ;
for i = 0; :::;} Episodesdo

Observe the initial statest;
for t = 0; :::;} Control_Stepsdo

Compute the greedy action with BDQ agent;
Sampleat from a Gaussian distribution with its mean at the greedy action and standard deviation
based on a linear schedule;

Executeat if the action is within the action limits, otherwise re-sampleat;
Observe the new statest+1 ;
Compute rewardr t by Equation 8;
Store the transitions.st; at; rt; st+1 / to the experience replay bu�erD;
Calculate priority sampling weight and store inD;
if t modT raining_Steps= 0 then

Sample a mini-batch of transitions fromD;
Estimate Q-value by Equation 3;
Compute TD target by Equation 4;
Perform gradient descent step on the loss by Equation 5 to update the parameters� in the online
networkQ;

Update priorities of sampled transitions;
end
if t modNetwork_Update_Steps= 0 then

Update the target networkQ* = Q
end

end
end

2.3. Personalized Thermal Comfort Matrix
Although many studies have been conducted on personal comfort models, they often lack a vision for real-world

integration in building controls [50]. This study proposes a personalized thermal comfort matrix that aligns with
standard thermal comfort surveys and integrates individuals' comfort needs into the DRL control loop. Speci�cally,
the comfort matrices (one for each occupant) are initialized based on the PMV model and a one-time preliminary
comfort survey. The PMV model is used to develop the neutral-preference comfort matrices, then modi�ed based
on the survey responses. After initialization, the comfort matrices are used to pre-train the agent. Unlike many other
data-driven personal comfort models requiring extensive training data, the proposed method relies only on a one-
time survey before enabling online control. During the online learning phase, the initialized comfort matrices will be
continuously updated through the real-time comfort votes. Gradually, each comfort matrix becomes customized for the
corresponding occupant.

Assuming that the personalized comfort level is mainly determined by two controllable indoor environment
variables (e.g., room temperature and air velocity), we will discretize them intomandn intervals, respectively. LetCk
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Table 1
Summary of data sources and their usage at di�erent agent training phases

Data O�ine pre-training
Online learning

Early stage Late stage

Thermal comfort feedback
Initialized personalized

comfort matrix
Updated personalized comfort matrix

HVAC energy feedback
Calibrated virtual

environment
Periodically re-calibrated

virtual environment by GP-BO
Real-time BMS data

denotes them-by-n comfort matrix forkth occupant, where each entry.ck
ij / Ë Rm• n represents the thermal discomfort

penalty value ati th and j th environment condition. In particular, the thermal discomfort penalty must align with
the standard thermal comfort surveys, such as the ASHRAE 7-point thermal sensation scale or the 4-point thermal
acceptability scale [63]. An example of the thermal discomfort penalty values can be de�ned in the following format
to map the personalized comfort level to the RL reward calculation: {Clearly acceptable (0), Just acceptable (-1), Just
unacceptable (-2), Clearly unacceptable (-3)}. Note that instead of directly learning from occupants' feedback, the
proposed agent always interact with the comfort matrices for two reasons. First, since real-time comfort votes at a
high temporal granularity are di�cult to acquire, the control time step is usually much smaller than the comfort votes
interval. Consequently, a personal comfort model is needed to compute the reward for the agent at every control time
step. Second, the real-time comfort votes may include inconsistent responses due to the recall bias [39], which will
confuse the learning agent. Hence, the comfort matrices also act as a �bu�er� to consolidate inconsistent comfort votes,
thereby stabilizing the online learning. The detailed process for the initialization and online update of the proposed
personalized comfort matrix is illustrated in Section 3.3. This study employed a two-dimensional matrix because it
was assumed that the thermal comfort is mainly related to the two environmental variables in the experiment setting,
which can be easily extended to higher dimensions if more variables are considered.

2.4. Virtual Environment for Agent Training
RL agents learn to make better decisions by trial and error, inevitably leading to unsafe actions. Virtual

environments play an essential role in RL research in mitigating undesirable outcomes during the exploration and
accelerating the training process. In this study, the o�ine pre-training and the early stage of online training are done by
having the agent interact with a Modelica-based virtual environment, as shown in Figure 1. The BDQ agent training
relies on the prioritized experience replay technique. It stores trajectories of experience in a replay bu�er and lets
o�-policy agents reuse past experiences and prioritize important transitions. At each training step, a mini-batch of
experiences will be sampled from the replay bu�er to update the weights of the deep neural network. This technique has
been shown to signi�cantly improve the sample e�ciency and stability of the network during training [64]. We selected
Modelica over other traditional building simulation tools, such as EnergyPlus and TRNSYS, because it inherently
models the building control dynamics without relying on additional software or scripts. To allow co-simulation between
the DRL agent and the virtual environment, an OpenAI gym [65] interface wrapper for the pre-compiled Modelica
model is developed based on PyFMI [66].

The data sources data sources and their usage at di�erent agent training phases are summarized in Table 1. During
o�ine pre-training, the virtual environment provides synthetic building operating data based on historical weather
�les, and the initialized comfort matrix mimics the comfort feedback of the actual occupants. The deep neural network
training and hyperparameters tuning are performed to maximize the reward in this interactive simulation environment.
Finally, the pre-trained agent with �ne-tuned hyperparameters is prepared to control the actual HVAC system.

By contrast, the online agent training is divided into two stages. At the early stage, the agent still interacts with
the virtual environment. This is because, in principle, the size of the replay bu�er should be large enough to contain a
wide variety of experiences; otherwise, the network tends to over�t the most recent trajectories and forget what it has
learned from previous experiences. Consequently, the replay bu�er needs to collect many experiences before starting
training. Since only limited data is collected at the early stage of online deployment, the agent is trained daily in the
virtual environment with the updated personalized comfort matrices. However, at the late stage, once the reply bu�er
is �lled with the data from the actual HVAC system, the agent will directly learn from the BMS data onwards. Zhang
and Sutton [67] compared the performance of di�erent replay bu�er sizes in two notable control tasks and concluded
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