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A B S T R A C T

The proliferation of sensing technologies has allowed the collection of occupancy-related data to
support various building applications, including adaptive HVAC and lighting controls, maintenance
operations, and space utilisation. However, past occupancy prediction studies often considered
different combinations of sensor data and investigated a limited number of space types. This study
performs occupancy prediction based on a minimum sensing strategy by using a comprehensive
set of sensor data (i.e., indoor environmental and outdoor weather conditions, Wi-Fi connected
devices, energy consumption data, HVAC operations, and time-related information) to identify the
most crucial features through a proposed feature selection algorithm. Occupancy predictions were
subsequently performed using different deep learning architectures, including Deep Neural Network
(DNN), Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Gated Recurrent Unit
(GRU), and Bi-directional GRU (Bi-GRU) in an office, library, and lecture room. Our findings
highlighted that the proposed feature selection algorithm outperformed a popular feature selection
algorithm to achieve a higher model performance with lower sensing requirements. Furthermore,
empirical results showed that indoor 𝐶𝑂2 levels and Wi-Fi connected devices were crucial features
for predicting occupancy across all space types. The best model performances were achieved using
Bi-GRU for office, GRU for library, and Bi-GRU for lecture room.

1. Introduction
The adoption of various sensing technologies has en-

abled building managers and researchers to collect vast
amounts of data on the building’s operation and its oc-
cupants to facilitate effective building management while
maintaining a comfortable indoor environment. The col-
lection of occupancy and occupant-related information, in
particular, has been useful in many building applications,
including adaptive HVAC, lighting, and plug load controls
[1, 2, 3], maintenance operations [4], space utilisation analy-
sis [5], point-of-interest identification [6], and performative
building design [7]. The occupancy information can be
collected at different resolutions at the spatial scale (e.g.,
building, floor, zone, room), temporal scale (e.g., hours,
minutes, seconds), and occupancy types (e.g., presence,
count, identity, activity) [8] based on the sensing technology
adopted. The complexity involved during the data collection
process and the sensing requirements also increase propor-
tionally with the resolution of the occupancy data obtained.

Occupancy sensing approaches can be categorised into
two groups: terminal-based approaches and non-terminal-
based approaches [9]. Terminal-based approaches use var-
ious active sensing technologies such as wearable sensors
and the occupants’ smartphone devices to collect high-
resolution and accurate occupancy information within the
building. The advancements in Internet-of-Things and com-
munication technologies have also facilitated the adoption
of different wireless technologies in occupancy sensing,
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such as Radio Frequency Identification (RFID) [10], Wi-
Fi [11], and Bluetooth Low Energy (BLE) [12] to further
improve the range, latency, accuracy, resolution, and energy
performance of existing sensing approaches. However, de-
spite their advantages, terminal-based approaches are lim-
ited due to the need to deploy dedicated sensors and perform
third-party software installations (i.e., BLE beacons, Wi-
Fi access points, mobile applications), which increases the
implementation cost, intrudes upon the occupants’ regular
routines, and raises privacy concerns. Non-terminal-based
approaches, on the other hand, relies on passive sensing
technologies, such as 𝐶𝑂2 sensors [13], Passive Infrared
(PIR) sensors [14], ultrasonic detection sensors [15], sound
detection sensors [16], camera systems [17] and smart
power meters [18], to indirectly collect the occupancy in-
formation for a particular zone within the building where
the sensors are deployed. While these sensing technologies
are arguably less intrusive than those used in terminal-based
approaches, the resulting occupancy sensing systems are
often limited in their detection accuracy and resolution.

Aside from the advancements in sensing technologies,
the recent application of machine learning for occupancy
sensing has resulted in notable improvements in detection
accuracy over traditional approaches [19]. These improve-
ments can be attributed to the machine learning algorithms’
ability to learn from the vast amount of sensor data collected
from the building and identify its correlation with the build-
ing’s occupancy. Advancements in machine learning have
also led to the development of the field of deep learning,
where dense neural networks can be used to capture the hid-
den relationship between the building’s sensor data and oc-
cupancy information by iteratively updating the networks’
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parameters based on the error gradient. Deep learning ar-
chitectures are also able to provide more flexibility than
traditional machine learning algorithms due to their ability
to automatically extract high-level representations for model
inference [20]. This is known as feature engineering and
is a useful step previously performed by human domain
expertise to produce handcrafted features for improving
model performance [21]. Several specialised deep learning
architectures (i.e., Long-Short Term Memory (LSTM) and
Gated Recurrent Units (GRU)) have also been proposed and
applied in fields dealing with time-series data (i.e., vehicle
activity recognition, weather forecasting, financial market
forecasting) due to the networks’ designed ability to retain
the sequential correlation between the data collected within
the same period [22, 23, 24]. Given the time-series nature
of the building’s sensor data and the temporal correlation in
its occupancy, the application and comparison of different
deep learning architectures for occupancy prediction require
a deeper investigation.

Currently, researchers and building managers face two
main challenges. Firstly, with the plethora of different sen-
sor data (e.g., indoor environmental data, Wi-Fi data, and
energy consumption data) that has been used by past stud-
ies to perform occupancy prediction, it is challenging to
perform a fair comparison between different studies and
identify the most crucial sensors to deploy within the build-
ing when implementing a new occupancy prediction model.
Past studies were also conducted in different space types and
using different modeling approaches without clear bench-
marks, which further reduces the generalisability of their
results to other space types and model architectures not eval-
uated. Secondly, developing such data-driven approaches is
a costly effort as it often requires setting up the necessary
infrastructure and communication network to collect and
store the vast amounts of sensor data collected from the
building. Apart from the initial installation, there is also a
need to regularly monitor and maintain the deployed sensors
to ensure that the occupancy models remain operational.
Therefore, a real-world occupancy prediction system imple-
mentation requires striking an optimal balance between high
model performance and low sensing requirements.

1.1. Objective and Contributions
The objective of this paper is to perform occupant count

prediction using different deep learning architectures within
multiple space types based on a minimum sensing strategy.

The contributions of this work are listed as follows:

• Proposed a novel feature selection algorithm and
applied it to a comprehensive dataset containing a
wide range of sensor data (i.e., indoor environmental
and outdoor weather data, Wi-Fi connected devices,
energy consumption data, HVAC operations data,
and time-related information) to achieve a minimum
sensing strategy.

• Identified the most crucial and optimal number of
features for occupant count predictions in three differ-
ent space types (i.e., office space, library, and lecture
room).

• Evaluated the performance of several deep learning
architectures (i.e., Deep Neural Networks, LSTM,
Bidirectional LSTM (Bi-LSTM), GRU, and Bidirec-
tional GRU (Bi-GRU)) and compared their perfor-
mance in different space types.

2. Related Work
This section provides a comprehensive review of past

occupancy prediction studies using different sensor data
and machine learning approaches to perform occupancy
prediction in different space types.

Some of the most common sensor data used in occu-
pancy prediction comprise of indoor environmental data,
which encompasses a wide variety of information, including
indoor 𝐶𝑂2 levels, indoor air temperature, pressure, relative
humidity, illuminance, sound pressure level, and 𝑃𝑀2.5
levels. For instance, a study conducted by Lam et al. [25]
predicted the number of occupants in a smart office testbed
by using a Hidden Markov model (HMM) to analyse the
indoor environmental data collected from the testbed. The
indoor environmental data was captured using a system of
sensor networks to obtain various parameters such as 𝐶𝑂2
levels, carbon monoxide levels, volatile organic compounds,
𝑃𝑀2.5, acoustics, illumination, motion, temperature, and
humidity. Another study conducted by Vela et al., [26]
attempted to perform occupancy prediction in a fitness gym
and a residential living room based on the indoor envi-
ronmental data (e.g., relative humidity, temperature, atmo-
spheric pressure, altitude) collected from both spaces. The
authors evaluated the performance of three machine learn-
ing algorithms, including support vector machine (SVM),
k-nearest neighbour (KNN), and decision trees (DT). An
IoT framework was also proposed by Hitimana et al. [27]
to capture the real-time indoor environmental data in an
office space for occupancy prediction. The proposed oc-
cupancy prediction model follows a LSTM neural network
architecture and is compared against other machine learning
algorithms, including SVM, Naive Bayes network, and
multilayer perception feed-forward network. Chen et al.
[28] proposed deep learning model based on a convolu-
tional deep bi-LSTM architecture to automatically learn
the local sequential features from the raw environmental
sensor data collected from the study area and encode the
temporal dependencies of these local features. The study
was conducted in a university research lab where several
indoor environmental sensor data (e.g., 𝐶𝑂2 levels, air
temperature, air pressure, and humidity) were collected for
building occupancy prediction.

Some studies have also attempted to combine the energy
consumption data of various building systems (e.g., HVAC,
lighting, and plug load) with indoor environmental data
to enhance the performance of the occupancy prediction
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model. The energy data were either collected at the building
level through smart meters or at the individual appliance
level through the deployment of smart plugs [29]. An
example is a study conducted by Razavi et al. [30], which
analysed the electricity consumption data of more than
5000 residential homes and evaluated the performance of
a wide array of machine learning models (e.g., SVM, KNN,
Random Forest (RF), Gradient Boosting (GB), and neural
networks) to predict the present and future occupancy status.
Another study conducted by Park et al. [31] proposed an
occupancy detection model based on an LSTM architecture
by using the energy consumption data collected from smart
plugs to identify occupant presence in residential homes.
Ryu and Moon [32] also proposed a machine learning-
based occupancy prediction model, which combines indoor
environmental sensor data (e.g., air temperature, humidity,
𝐶𝑂2 levels, illuminance, and motion data) with lighting and
appliance energy consumption data to predict the occupant
count in a university testbed. The proposed model is de-
veloped using a two-step approach, which first detects the
current occupancy level based on the present indoor envi-
ronmental conditions and energy consumption data before
predicting the future occupancy using an HMM.

Other less common sensor data used for occupancy
prediction include pyroelectric infrared sensors, which have
been used by Liu et al. [33] to infer the real-time occupancy
presence information of a real-world office space. The study
proposes a low-cost, battery-power, wireless occupancy
detector with a pre-trained HMM capable of generating the
occupancy status of an area of interest. Huckuk et al. [34]
also attempted to use the thermostat data from 100 randomly
selected residential homes to develop a machine learn-
ing model for predicting future occupancy state. Different
models were evaluated during the study, including simple
baseline models, classification models including Logistic
Regression (LR) and RF, and sequential models such as
HMM and Recurrent Neural Networks (RNN). The study
concluded that the RF algorithm could outperform all other
candidate models, which raises several questions regarding
the generalisability of the study’s findings to other space
types and sensor data. Lastly, Yuan et al. used the location-
based services supported by the users’ mobile devices to
obtain their presence information within a building. Based
on the occupancy data obtained from 16 different build-
ings, the authors developed an integrated approach using
temporal-sequential analysis and an ANN model to perform
occupancy forecasting [35].

Apart from the studies reviewed above, some have
also attempted to include an additional feature selection
step during the model development stage to identify the
most crucial features for occupancy prediction. For in-
stance, Zimmermann et al. [36] proposed a correlation-
based feature selection algorithm to identify useful subsets
of environmental features for occupancy prediction before
evaluating the resulting model performance based on dif-
ferent machine learning algorithms (e.g., Naive Bayes, DT,
LR, KNN, and RF). Another study conducted by Chen et

al. proposed a data fusion framework that consists of an
extreme learning machine-based (ELM) wrapper method to
identify the most important subset of environmental sen-
sors for occupancy prediction before evaluating the model
performance against different machine learning models.
The different machine learning models evaluated include
ELM, SVM, Deep Neural Network (DNN), KNN, linear
discrimination analysis (LDA), and DT. Wang et al. [37]
also proposed an adaptive lasso approach that evaluates
the correlation between different environmental and Wi-Fi-
based features (e.g., temperature, relative humidity, 𝐶𝑂2
level, media access control (MAC) address, and received
signal strength indicator (RSSI) value of Wi-Fi-enabled
devices) to identify the most critical features for occupancy
detection. A DNN model was also developed to predict the
number of occupants and occupancy level in a graduate
student office based on the important features identified
by the proposed adaptive lasso method to result in a com-
putationally efficient model. Lastly, a study conducted by
Masood et al. [38] introduced two feature selection methods
to identify the most crucial indoor environmental features
for occupancy prediction. The first method is a wrapper-
based method known as WRANK-ELM, which selects from
an ordered list of features using an ELM classifier, while the
second approach uses a filter-wrapper hybrid method (i.e.,
RIG-ELM) that uses the relative information gain criterion
to rank each feature before applying an ELM to perform an
incremental search.

However, despite the amount of past research conducted
on this topic, many studies have only considered utilising
a limited number of features for occupancy prediction,
with other building-related data such as HVAC operations
data, outdoor weather data, and Wi-Fi related data being
underutilised. Furthermore, past studies that attempted to
identify the most crucial features for occupancy prediction
are often lacking as the feature selection analysis is often
conducted on a small pool of sensor data collected from a
specific space type. These factors reduce the generalisabil-
ity of the studies’ findings, especially when dealing with
buildings with different space types and containing other
sensor data that was not considered in the original study.
Therefore, this study addresses these research gaps by ap-
plying a feature selection algorithm to a comprehensive set
of building sensor data to identify the most crucial features
for occupancy prediction and strike a good balance between
model performance and minimum sensing requirements.
To further enhance the generalisability of our findings, an
identical analysis was also conducted over three different
space types (i.e., office space, library, and lecture room)
while evaluating five different deep learning architectures.
Table 1 provides a summary of all of the studies reviewed in
this section and the scope of this study by highlighting the
studies’ occupancy resolution, sensor data used, machine
learning models evaluated, and space types investigated.
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Table 1
Reviewed studies based occupancy resolution, sensor data, machine learning models and space types.

Study Occupancy
Resolution Sensor Data Models Space Types

[33] Presence Motion HMM Office

[36] Presence, Count 𝐶𝑂2, VOC, air temperature,
relative humidity NB, DT, LR, kNN, RF Residential

(Student Apartment)
[34] Presence Thermostat LR, RF, HMM, RNN Residential

[39] Presence 𝐶𝑂2, pressure, air temperature,
relative humidity

ELM, SVM, ANN, kNN, LDA,
CART Office

[30] Presence Electricity consumption RF, SVM, kNN, ANN, GB Residential
[31] Presence Plug load energy consumption LSTM Office

[28] Count
(low, medium, high)

𝐶𝑂2, air temperature, pressure,
relative humidity

Convolutional Deep
Bi-directional Long Short-Term
Memory (CDBLSTM)

Office
(Graduate Student)

[32] Count

𝐶𝑂2, air temperature, relative
humidity, illuminance, motion,
energy consumption of lighting,
plug loads, HVAC

DT, HMM Office
(Test-bed)

[11] Count 𝐶𝑂2, air temperature, relative
humidity, MAC address kNN, ANN, SVM Office

(Graduate Student)

[27] Count 𝐶𝑂2, air temperature, relative
humidity, illuminance, motion SVM, NB, MLP, LSTM Office

[37] Count
(low, medium, high)

𝐶𝑂2, air temperature, relative
humidity, MAC address

ANN, Feature Selection
Algorithm (Adaptive lasso
filtering)

Office
(Graduate Student)

[26] Count
(low, medium, high)

Relative humidity, air temperature,
pressure, altitude kNN, SVM, DT

Fitness Gym and
Residential
(Living Room)

[25] Count

𝐶𝑂2, VOC, outside temperature,
dew point, 𝑃𝑀2.5, lighting,
indoor temperature, indoor relative
humidity, motion, indoor acoustics

HMM Office

[38] Count CO2, relative humidity, air
temperature, pressure

ELM, Feature Selection
Algorithm (Wrapper-based
ranking using ELM and
Filter-wrapper hybrid
algorithm based on RIG)

Office

[35] Count Smartphone devices Temporal-sequential analysis
with ANN

Railway Station,
Airport,
Commercial,
Hospital

Tekler &
Chong Count All sensor data in Table 3

DNN, LSTM, Bi-LSTM,
GRU, Bi-GRU, Proposed
Feature Selection Algorithm

Office, Library,
Lecture Room

3. Methodology
This section provides an overview of the methodology

proposed to perform occupant count prediction based on
a minimum sensing strategy. We begin by collecting a
comprehensive set of sensor data from three different space
types in our study building and their corresponding occu-
pant count information to serve as ground truth. Following
this, several data processing steps are performed to address
any erroneous data and extract the time-related features to
improve the model’s predictive performance. The updated
list of features is subsequently passed into a 2-step feature
selection algorithm to identify the most crucial features
for occupancy prediction and evaluated using five different

deep learning architectures along with various analysis.
The detailed description of each step is elaborated in the
following subsections and depicted in Figure 1.

3.1. Space Type and Sensor Data Description
The dataset [40] used in this study was collected from

the School of Design and Environment 4 (SDE4) building
at the National University of Singapore. SDE4 is a six-
story net-zero energy building in Singapore with a total
gross floor area of around 8,588 square meters. Three
different space types were analysed in this study, including
an office space for researchers, a library space accessible
to all students, and a lecture room, located on different
levels of the study building. A detailed description of each
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Figure 1: Overview of the steps taken to perform occupant count prediction and to achieve a minimum sensing strategy

Table 2
Detailed description of each space type measured directly from the study building.

Space Type Level Floor Area
[m2]

Floor-to-ceiling
Height [m]

Volume
[m3]

Seating Capacity
[person]

Max. Occupancy
Density [m2/person]

HVAC
Type

Office 3 141.9 4.1 581.7 25 5.6 AHU
Library 2 182.8 7.5 1363.3 36 5 AHU

Lecture Room 4 118.6 4.1 486.2 40 3 FCU

space type, such as the floor level, floor area, floor-to-
ceiling height, room volume, seating capacity, maximum
occupancy density, and HVAC system deployed, has been
provided in Table 2. It should also be highlighted that the
office space and library are conditioned by a common air
handling unit (AHU) serving multiple rooms in the building,
while the lecture room is conditioned by fan coil units
(FCU).

By developing a data fusion pipeline to extract the
sensor data collected from each space type, we obtained
a total of 123 days of data collected during the weekdays
at a sampling resolution of 5-minute intervals. The data
categories included in this dataset consist of indoor and
outdoor environmental conditions, number of Wi-Fi con-
nected devices at each access point, energy consumption
data of different end uses (i.e., HVAC, ceiling fan, plug
loads, and lighting), and HVAC operations collected through
various sensors deployed at the room and building level.
Furthermore, the dataset is supplemented with the ground
truth occupant presence and count information for each
space type by manually reviewing the surveillance camera
footage deployed within and at the entrances of each space
type. Each data entry is also appended with the timestamp
information, indicating the date and time when each entry
is captured. The detailed information of each sensor data,
including its respective unit, data category, and availability
in each space type, is provided in Table 3.

3.2. Data Processing
Based on the raw sensor data obtained through the data

fusion pipeline, multiple data processing steps were per-
formed before the data is passed into the proposed feature
selection algorithm.

The first step involves removing missing or erroneous
data as a result of sensor failure or sensor fault. Missing
sensor data occurs when the sensor fails to collect any
readings or the readings were lost in transmission during a
particular time interval, while erroneous data occurs when
the sensor successfully records a reading but it was not
successfully stored in the database due to hardware glitches.
The erroneous sensor data is removed from the dataset by
replacing it with a missing value before addressing it with
the other missing data in the dataset using a data imputation
algorithm known as MissForest [41]. The random forest-
based imputation algorithm begins by imputing the candi-
date column with the least number of missing values and
replacing the missing values in the remaining columns with
their respective means. Following this, a RF model is trained
by setting the candidate column as the output variable and
the remaining columns as the model’s input for those rows
that do not contain missing values in the candidate column.
After the model has been trained, it is used to impute the
missing values in the candidate column before moving on to
the next candidate column with the second smallest number
of missing values. This process is repeated for each column
over multiple iterations until there is minimal difference
between the imputed dataset in the previous round and the
newly imputed dataset.

After addressing the missing and erroneous data, the
second data processing step involves extracting the time-
related features from the dataset’s timestamp to provide
the model with more temporal information about the pre-
dicted occupancy level in each space type. This feature
is particularly useful for space types whose occupancy
levels are highly correlated with specific periods of the
day. Some examples include the operating hours of the
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Table 3
Detailed description of each sensor data used in this study, including its respective unit, data category, and availability in each
space type.

Data Category Sensor Data Data Unit Avail. in
Office

Avail. in
Library

Avail. in
Lecture Room

Indoor Environmental
Quality

VOC ppb X X X
Sound pressure level dB(A) X X X

Relative humidity %RH X X X
Air temperature ◦C X X X

Illuminance lux X X X
PM2.5 𝜇g/m3 X X X

Indoor CO2 ppm X X X
Wi-Fi Wi-Fi connected devices Number X X X

Energy Consumption

Ceiling fan energy kWh X X X
Lighting energy kWh X X X

Plug load energy kWh X X X
Chilled water energy kWh X X X
AHU/FCU fan energy kWh X X X

HVAC Operations

Supply air flow CMH X X -
Damper position % X X -

Temperature setpoint ◦C X X X
Cooling coil valve position ◦C. X X -

Cooling coil valve command ◦C X X -
AHU/FCU fan speed Hz X X X

Offcoil air temperature ◦C X X -
Offcoil temperature setpoint ◦C X X -

Supply air humidity %RH X X -
Pressure across filter Pa X X -

Supply air static pressure Pa X X X
Supply air temperature ◦C X X X

Outdoor Weather

Baromatic pressure hPa X X X
Dry bulb temperature ◦C X X X
Global solar radiation W/m2 X X X

Wind direction ◦(Degree) X X X
Wind speed m/s X X X
Outdoor CO2 ppm X X X

Rainfall mm X X X
Relative humidity %RH X X X

Time-related Hour (12AM - 12PM) Hour X X X
Occupancy Occupant Count Number X X X

library space, specific time slots where lectures are regularly
scheduled, and the working hours of the office workers.
The time-related features are obtained by first extracting the
hour information from each data point’s timestamp before
performing one-hot-encoding to obtain a one-hot vector of
dimension 24 (i.e., one for each hour in the day).

The last data processing step involves feature scaling,
where each numerical feature is transformed to follow a
standard normal distribution with a mean of 0 and a standard
deviation of 1. This step is performed to standardise each
feature’s magnitude and reduce the convergence time during
the training process. An inverted transformation step is also
performed during the model prediction phase to revert the
model’s output to its original scale before calculating its
error scores.

3.3. Feature Selection Algorithm
Feature selection refers to a process of reducing the

number of input features used within a predictive model by
evaluating and identifying the most important features that
significantly contribute to the model’s performance. This
step is crucial to achieving a minimum sensing strategy as
the resulting occupancy prediction model is more robust to
issues caused by sensor failure and lowers the overall cost
related to deployment and maintenance. The reduction in
the number of model parameters, in general, also helps to
simplify the model’s complexity, reduce the likelihood of
overfitting, and decrease training time.

Based on the features obtained from each space type’s
sensor data and the time-related features extracted from
the timestamp information, the next step in our proposed
methodology involves the application of a 2-step feature se-
lection algorithm for occupant count prediction, as depicted
in Figure 2.
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3.3.1. Step 1: Feature Rankings and Scores
In the first step of the proposed algorithm, an ex-

treme gradient boosting-based recursive feature elimination
(XGB-RFECV) approach was used to generate the feature
rankings for each feature in the dataset. At the same time, an
extreme gradient boosting (XGB) model is used to generate
the feature importance scores for the same feature set. The
XGB model was chosen as the base model in this case due
to its superior performance and efficient learning algorithm,
which is crucial given the recursive nature of our proposed
algorithm.

Recursive Feature Elimination (RFE) is a topdown elim-
ination method that begins with the complete set of features
and recursively eliminates the least relevant features that
do not significantly contribute to the model’s predictive
performance. The relevancy of each feature is determined
by fitting a machine learning algorithm (i.e., a XGB model)
that ranks the features based on their importance scores. The
least important features are discarded during each iteration,
and the remaining features are refitted to the model to
generate a new set of importance scores. The top-ranked
features will be removed in the last few iterations, while
those removed in the initial iterations are assigned a lower
rank. RFE with cross validation (RFECV) extends upon
RFE by including an additional cross-validation step to
increase the approach’s robustness. This is achieved by
splitting the dataset into k folds and applying the RFE
algorithm on each fold to generate each feature’s ranking.
The rankings from each fold are subsequently combined via
averaging to obtain the final feature rankings [42].

Given that the feature rank assigned to each feature takes
on an integer value with the possibility of multiple features
being assigned the same rank, the features are once again
fitted to an XGB model to generate their feature importance
scores. The feature importance scores for decision tree-
based models are calculated by weighting the decrease in
impurity achieved at each attribute split point with the num-
ber of samples affected by the split. In the case of ensemble-
based models, such as XGB models, the feature importance
score is calculated by averaging the importance scores of
each decision tree used within the ensemble [43]. This step
helps identify the importance order between features within
the same rank determined by RFECV.

Once the feature rankings and feature importance scores
are calculated, the entire feature list is sorted first based on
their feature rankings, followed by their feature importance
scores. The sorted feature set is subsequently stored before
moving on to the next step of the proposed feature selection
algorithm.

3.3.2. Step 2: Performance Evaluation Loop
The second step involves the performance evaluation

loop, where the top N features are selected from the sorted
feature list from step 1 to train and evaluate the occu-
pancy prediction model using a 5-fold rolling-basis cross-
validation approach. The evaluation loop adopts a bottom-
up approach by starting with the most important feature

(i.e., N=1) and storing the resulting model’s predictive
performance before re-evaluating the model’s performance
with the top 2 most important features (N=2). By compar-
ing the predictive performance of both models, the loop’s
exit condition is achieved when we observe a drop in the
model performance after the inclusion of the 𝑁 𝑡ℎ feature.
Otherwise, N is incremented by 1, and the evaluation loop
continues with the next iteration by fitting a new model
based on the updated feature list.

A detailed flowchart of the proposed 2-step feature
selection algorithm is provided in Figure 2, together with
its corresponding pseudocode (refer to Algorithm 1).

Figure 2: Detailed flowchart of the proposed 2-step feature
selection algorithm

3.4. Model Development
This section provides an overview of the five deep

learning architectures investigated in this study to predict
occupant count in multiple space types. The five deep learn-
ing architectures include DNN and sequential-based models
such as LSTM, Bi-LSTM, GRU, and Bi-GRU, due to their
ability to retain the temporal information in time-series
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Algorithm 1: Proposed Feature Selection Algo-
rithm

Result: Select top n features for occupant count
prediction

𝑋 represents the complete set of features evaluated
using the proposed feature selection algorithm.
𝑦 represents the predicted occupant count (i.e.,
ground truth).

Step 1: Feature Ranking and Scores
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑠 ← 𝑋𝐺𝐵 − 𝑅𝐹𝐸𝐶𝑉 (𝑋, 𝑦)
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ←
𝑋𝐺𝐵.𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑋, 𝑦)

sort 𝑋 in descending order based on
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑠 followed by
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

Step 2: Performance Evaluation Loop
𝑛 = 1
while n ≤ ‖𝑋‖ do

𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑋[∶ 𝑛];
for 𝑖 ← 0 to 𝑘 do

𝑚𝑜𝑑𝑒𝑙 ← 𝑡𝑟𝑎𝑖𝑛(𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) on
rolling basis
𝑟𝑒𝑠𝑢𝑙𝑡 ←
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡𝑒𝑠𝑡), 𝑦𝑡𝑒𝑠𝑡)

end
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑚𝑒𝑎𝑛(𝑟𝑒𝑠𝑢𝑙𝑡) if
performance𝑝𝑟𝑒𝑣 > 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then

𝑋𝑓𝑖𝑛𝑎𝑙 = 𝑋[∶ 𝑛 − 1];
𝑒𝑥𝑖𝑡;

else
𝑛 + +;
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑣 ← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

end
end

data. The detailed description of each model architecture is
described in the following subsections.

3.4.1. Deep Neural Network (DNN)
The DNN architecture consists of a layered arrangement

of neurons, where each neuron passes a signal to the
other neurons in the adjacent layer based on the received
input from the previous layers. Depending on the model’s
complexity, each layer can consist of one or more neurons,
where each neuron will apply an activation function on
an incoming signal before passing it on to the neurons
in the subsequent layers. By applying a weight to the
connection between two neurons, the weight’s magnitude
can help to transform the input signal into a desired final
output. During the training phase of the DNN, the weight
parameters between two neurons are iteratively updated via
a process known as backpropagation to train the model to
generate the desired output. Furthermore, by increasing the
number of hidden layers in the neural network and training
the model on a sufficiently large amount of training data,

DNNs can learn complex non-linear patterns to improve
their prediction performance.

3.4.2. Long Short Term Memory (LSTM Neural
Network)

LSTM is a type of sequential-based model that can be
seen as an improvement over the DNN architecture due
to its ability to retain historical information to inform its
predictions [44]. As a result of this feature, this model
architecture has been adopted in many applications involv-
ing sequential data, including image classification [45],
stop activity recognition [22], and speech recognition [46].
The ability to retain past information is achieved through
the LSTM unit, which consists of a cell state and three
interacting gate layers (i.e., input gate, forget gate, and
output) that regulate the flow of information into and out
of the cell. Through these interacting layers, the LSTM
architecture is said to resolve the exploding and vanishing
gradient problems faced historically by the recurrent neural
network architecture, allowing it to solve complex time
series problems.

3.4.3. Bidirectional Long Short Term Memory
(Bi-LSTM)

The Bi-LSTM is an extension of the regular LSTM
architecture by combining two independent LSTMs. The
first LSTM is provided information about the sequence in
a forward fashion, while the second LSTM is provided
information about the sequence in a backward fashion. This
architecture allows information about the sequence’s past
and future states to be accounted for simultaneously when
generating the model’s output [47].

3.4.4. Gated Recurrent Unit (GRU)
The GRU architecture can be viewed as a relatively

newer architecture based on recurrent neural networks but
has a more straightforward implementation than LSTMs.
Instead of having a cell state and three gates for regulating
information flow, GRUs only consists of an update gate
and a reset gate to regulate information flow. Due to a
fewer number of tensor operations conducted, the GRU
architecture requires a shorter training time and can produce
a comparable performance to LSTMs [48].

3.4.5. Bidirectional Gated Recurrent Unit (Bi-GRU)
Lastly, the Bi-GRU architecture is an extension of the

standard GRU architecture by putting two independent
GRUs together. Each GRU is provided with the forward
and backward information about the sequence for every time
step, respectively, thereby allowing the model to account for
the sequence’s past and future states simultaneously.

4. Results and Discussions
4.1. Model Implementation

The occupant count prediction models are implemented
using the Python language and the Tensorflow Keras API
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library to evaluate the overall model performance and ensure
computational efficiency.

The models developed in this study were also trained
and evaluated on the dataset based on a train-test ratio of
80%-20%. Furthermore, in order to retain the time-series
nature of the dataset and to avoid information leakage that
arises due to random sampling, the models were specifically
trained on data that was initially collected (i.e., the first
80%) before they were evaluated on data that was collected
towards the end of the data collection period (i.e., the final
20%). Both the training and test datasets are transformed
by grouping the sequential data points based on a moving
window of size 5 as the model’s input. At the same time,
the ground truth is set as the occupant count in the next
time step (i.e., prediction horizon of 5 minutes). In this case,
we have determined that a window size of 5 is appropriate
as a shorter window size will provide limited information
about the historical occupancy trends for forecasting, while
a larger window size can reduce the model’s predictive
performance due to the introduction of excessive noise.
Similarly, the prediction horizon is also set as 5 minutes as
it is suitable for applications related to real-time predictive
control, with a longer prediction window resulting in larger
prediction errors.

All models are implemented using the same set of hy-
perparameters without hyperparameter tuning to allow a fair
comparison between different deep learning architectures.
These hyperparameters include:

• 3 hidden layers with 32 neurons/cells each

• ReLU activation function for neurons in the hidden
layer

• An output layer with 1 neuron

• Adam optimiser

• Batch size of 32

4.2. Model Evaluation Metrics
This study uses two evaluation metrics to assess the

models’ predictive performance due to their frequent appli-
cation in past occupancy prediction studies: Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE).

MAE is a measure of the absolute difference between
the predicted occupant count 𝑂𝑝 and the observed number
of occupants 𝑂𝑜𝑏 in the selected space type, as defined in
Eq. 1.

𝑀𝐴𝐸(𝑂𝑝) =
1
𝑁

𝑁
∑

𝑖=1
|𝑂𝑜𝑏𝑖 − 𝑂𝑝𝑖| (1)

where N is the size of the dataset
RMSE is another frequently used metric that measures

an average of the squared differences between the predicted
occupant count and the observed number of occupants in the
selected space type, as represented in Eq. 2. This metric, in

particular, exerts a more significant penalty on larger errors
made by the occupancy prediction model.

𝑅𝑀𝑆𝐸(𝑂𝑝) =

√

√

√

√

𝑁
∑

𝑛=1
(𝑂𝑜𝑏 − 𝑂𝑝)2∕𝑁 (2)

4.3. Feature Rankings and Importance Scores in
Multiple Space Types

The results of the feature selection rankings and feature
importance scores generated according to the first step
of the proposed feature selection algorithm for occupant
count prediction. Figure 3 depicts the feature rankings and
importance scores for the top 15 features for each space
type (i.e., office, library, and lecture room) arranged in
descending order. The feature ranking for each feature is
labeled on the right-hand side of each bar, and the bar
length corresponds to the feature’s importance score. On
top of that, each feature is also colour-coded based on its
respective data category (i.e., HVAC Operations, Energy
Consumption, Time-related, Indoor Environmental Quality,
Wi-Fi, and Outdoor Weather).

By analysing the results from Figure 3, it can be ob-
served that the most crucial features for occupancy predic-
tion differ significantly between different space types.

For the office space, while all top 15 features were
assigned a feature rank of 1, the supply air temperature was
observed to be the most important feature overall for occu-
pancy prediction, with an importance score of 0.35 out of 1.
This feature is also observed to be the only important feature
among the other HVAC operation-related features consid-
ered in the dataset. Apart from the top feature, the other
important features for performing occupancy prediction in
the office space include the energy consumption contributed
by the AHU fan unit, chilled water energy, and ceiling fan.
All these features are related to different HVAC systems
deployed within the office, further highlighting the value of
using HVAC-related features for occupant count prediction
within office spaces. Apart from HVAC-related features,
other features such as the indoor environmental conditions
of the room (i.e., indoor relative humidity, illuminance, air
temperature, indoor 𝐶𝑂2, and 𝑃𝑀2.5), the number of Wi-Fi
connected devices, and certain hours of the day (i.e., 8 AM,
10 AM, 2 PM, 3 PM, and 4 PM) are also found to be useful
for occupant count prediction.

For the library space, the findings appear to be similar
to those highlighted in the office space, where HVAC-
related features such as AHU fan energy, AHU fan speed,
and chilled water energy are among the top 5 features
for occupant count prediction. Apart from these features,
other HVAC operations-related features such as fan speed,
pressure across filter, supply air humidity, and the number of
Wi-Fi connected devices are also found to be useful features
for occupancy prediction. One of the interesting findings
from Figure 3 is the importance of plug load energy in
predicting occupant count, as it is common for the students
to charge their laptops or smartphone devices while they
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Figure 3: Top 15 features of each space type (i.e., office, library, and lecture room) sorted in descending order according to
their feature rankings and feature importance scores.

are studying in the library. On top of that, given that the
library’s operating hours, it is also not surprising to see time-
related features being deemed important for occupant count
prediction as they indicate a future increase or decrease in
the library space’s occupant count.

Lastly, for the lecture room, it can be observed from
Figure 3 that the number of Wi-Fi connected devices is
found to be the most useful feature for predicting occupant
count. This feature is also the only feature with a feature
rank of 1 and is assigned a high feature importance score
of 0.5 out of 1. Given that the lecture rooms are used
to conduct regular lectures during the day and serve as a
self-study space for students in the evening, the number of
occupants in the lecture room can be accurately predicted
based solely on the number of Wi-Fi devices connected to
the room’s access points. Furthermore, the usefulness of this
feature is particularly evident compared to other space types
such as the office or library space as the lecture room often
does not come equipped with many Wi-Fi devices except

for the electronic devices carried by the occupants (e.g.,
smartphone devices and laptops).

Apart from the differences among the different space
types when identifying the most useful features for occupant
count prediction, there are also several features found to be
useful among all three space types. These features include
the number of Wi-Fi devices in the room and the indoor
𝐶𝑂2 levels. When comparing different space type pairs, we
observed that chilled water energy, AHU fan energy, number
of Wi-Fi connected devices, illuminance, indoor 𝐶𝑂2, air
temperature level, and time-related features are important
features for both office and library spaces. The number
of Wi-Fi connected devices, indoor 𝐶𝑂2, lighting energy
consumption, plug load energy consumption, fan speed, and
dry bulb temperature are also important features for both
library and lecture room. Finally, when comparing the office
space and lecture room, the common features include the
number of Wi-Fi connected devices, indoor 𝐶𝑂2, ceiling
fan energy, indoor relative humidity, 𝑃𝑀2.5, supply air
temperature, and time-related features.
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Figure 4: Model performance for different deep learning architectures (i.e., DNN, LSTM, Bi-LSTM, GRU, Bi-GRU) when
performing occupant count prediction in the office using different number of features.

4.4. Optimal Number of Features based on the
Proposed Feature Selection Algorithm and
RFECV

This section provides an in-depth comparison of the
model performance of different occupancy prediction mod-
els developed using five different deep learning architec-
tures in three different space types. To facilitate a compar-
ison between the proposed feature selection algorithm and
the RFECV algorithm, each model’s predictive performance
is evaluated using different number of features and sorted
based on their importance score, before plotting out their
results for each space type in Figure 4, 5, and 6. The
prediction performance for each model is represented as
a band to indicate the maximum, minimum, and average
errors obtained through the 5-fold cross-validation step
performed in the Performance Evaluation Loop in Section
3.3).

It can be observed from Figure 4 that all five model
architectures showed a similar pattern, where the model’s
prediction errors generally follow an upward trend when
more features are included for occupancy prediction in the
office space. Furthermore, when comparing the proposed
feature selection algorithm with the RFECV algorithm, the
proposed feature selection algorithm consistently outper-
formed the latter, for all model architectures, by requiring
significantly fewer features while achieving a lower MAE
and RMSE score. More specifically, the proposed feature
selection algorithm determined that the optimal number of
features for the DNN, LSTM, GRU, and Bi-GRU models
to be set at 2 (i.e., supply air temperature and chilled
water energy as listed in Figure 3), while the Bi-LSTM
model only required the use of supply air temperature for

predicting occupant count. This result contrasts with the
RFECV algorithm, which selected the top 42 features for
occupant count prediction, which resulted in a higher MAE
and RMSE score and a larger sensing requirement compared
to our proposed algorithm.

A similar pattern can be observed in Figure 5 where
the proposed feature selection algorithm consistently out-
performed the RFECV algorithm in the library space by
selecting a significantly fewer number of features while still
achieving lower MAE and RMSE scores. More specifically,
the proposed feature selection algorithm evaluated that the
DNN model required the use of the top 3 features for per-
forming occupant count prediction (i.e., AHU fan energy,
AHU fan speed, and plug load energy), while the LSTM,
Bi-LSTM, GRU, and Bi-GRU models only required the use
of the top feature (i.e., AHU fan energy) for occupant count
prediction. This result differs from the RFECV algorithm’s
conclusion, which selected up to 22 features for occupant
count prediction. Unfortunately, this resulted in higher MAE
and RMSE error scores, as well as a more significant sensing
requirement overall.

Lastly, based on Figure 6, it can be observed that the
RFECV algorithm and the proposed feature selection algo-
rithm had both recommended a similar number of features
for occupant count prediction in the lecture room. More
specifically, the RFECV algorithm recommended the use
of a single feature for occupancy prediction (i.e., number
of Wi-Fi connected devices), while the proposed feature
selection algorithm had proposed the use of the top two
features (i.e., number of Wi-Fi connected devices and light-
ing energy) for the DNN, LSTM, Bi-LSTM, and Bi-GRU
models. It can also be observed from Figure 6 that with
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Figure 5: Model performance for different deep learning architectures (i.e., DNN, LSTM, Bi-LSTM, GRU, Bi-GRU) when
performing occupant count prediction in the library using different number of features.

Figure 6: Model performance for different deep learning architectures (i.e., DNN, LSTM, Bi-LSTM, GRU, Bi-GRU) when
performing occupant count prediction in the lecture room using different number of features.

the inclusion of the second feature (i.e., lighting energy),
all four models were able to further reduce their prediction
errors (i.e., MAE and RMSE), outperforming the model
generated by the RFECV algorithm.

4.5. Model Comparisons between Different Deep
Learning Models and Ground Truth

This section highlights the best deep learning models
for each space type by comparing 1) the models’ predictive
performance based on their MAE and RMSE scores and
2) the number of optimal features selected based on the
proposed feature selection algorithm. A minimum sensing
strategy can be achieved by developing an ideal model
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with high predictive performance while having low sensing
requirements.

By plotting the predictive performance of each model
obtained as a result of the proposed feature selection al-
gorithm and comparing its performance against the other
deep learning architectures (refer to Figure 7), the best
performing models for each space type are:

• Office: Bi-GRU, which uses two features (i.e., supply
air temperature and chilled water energy) to achieve
an MAE and RMSE score of 0.116 and 0.326, respec-
tively.

• Library: GRU, which uses one feature (i.e., AHU Fan
Energy) to achieve an MAE and RMSE score of 0.160
and 0.331, respectively.

• Lecture room: Bi-GRU, which uses two features (i.e.,
number of Wi-Fi connected devices and lighting en-
ergy) to achieve an MAE and RMSE score of 0.085
and 0.318, respectively.

Figure 7: Model performances for different deep learning
architectures for the office, library and lecture room

Based on the best-performing models identified in Fig-
ure 7, the average predictions made by the selected models
for each space type are compared against the averaged
ground truth information in the test dataset and plotted in
Figure 8. It can be observed from Figure 8 that the selected

models were able to predict the occupancy levels in their
respective space types accurately. Furthermore, several in-
teresting observations can be made based on the occupancy
profiles for each space type. For instance, the occupants in
the office space tend to follow a regular working schedule,
which involves arriving at the office around 10 AM, leaving
for their lunch break between 12 PM and 1 PM, and ending
their work before 7 PM. On the other hand, the occupancy
profile for the library follows a different pattern where there
is a sudden spike at 9 AM and a considerable drop at 6
PM, indicating the start and end of the library’s operating
hours. The library’s average occupancy level also tends
to increase after 3 PM, which could be explained by the
students moving to the library to continue their revision after
attending their morning and early afternoon classes. Lastly,
the occupancy profile of the lecture room shows several
peaks throughout the day to represent regular lectures that
are usually scheduled during the morning, early afternoon
and evening periods. It can also be observed from Figure
8 that the occupancy level of the lecture room continues
to fluctuate after the dinner period as the space switches
into a study area for the students when there are no lectures
scheduled.

5. Conclusion
In this study, we performed occupant count predictions

by applying a novel feature selection algorithm on a com-
prehensive sensor dataset containing indoor environmen-
tal and outdoor weather condition data, number of Wi-Fi
connected devices, energy consumption data, HVAC oper-
ations, and time-related information from three space types
(i.e., office, library, and lecture room). Several popular deep
learning architectures were also implemented and evaluated
in this study, including DNN, LSTM, Bi-LSTM, GRU, and
Bi-GRU. Finally, a comprehensive analysis was conducted
to 1) identify the most crucial features for occupant count
prediction in an office, library, and lecture room, 2) identify
the optimal number of features for each space type using the
proposed feature selection algorithm compared to RFECV,
and 3) identify the best model architecture for each space
type based on model performance and sensing requirements.

Our empirical results highlighted that the proposed fea-
ture selection algorithm outperformed the baseline feature
selection algorithm (i.e., RFECV) consistently by achieving
a higher model performance while maintaining a signifi-
cantly lower sensing requirement. Furthermore, empirical
results showed that the indoor 𝐶𝑂2 levels and the number
of Wi-Fi connected devices were always among the top 15
most crucial features for occupancy prediction across all
space types, with the best model performances achieved by
Bi-GRU for the office, GRU for the library, and Bi-GRU for
the lecture room. Lastly, it should be highlighted that the
proposed feature selection algorithm is highly applicable as
it can be directly applied to other structured datasets from
other domains with minimal changes to the algorithm.

Through the insights gained in this study, building man-
agers and researchers can better identify the most crucial
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Figure 8: Comparison of the average predictions made
by the best performing models selected from each space
type (i.e., office, library, lecture room) against the averaged
ground truth information.

features for occupant count predictions to reduce the need
for expensive sensors and minimise deployment costs. Fu-
ture directions of this work can also strive towards further
improving the generalisability of the study’s findings by
analysing other space types typically found in a building to
support building-wide implementations of such occupancy
prediction systems.
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