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A B S T R A C T   

Model predictive control (MPC) has shown great potential in improving building performance and saving energy. 
However, after over 20 years of research, it is yet to be adopted by the industry. The difficulty of obtaining a 
sufficient control-oriented model is one major factor that hinders the application. In particular, what data is 
required to build the model and what control performance can be expected with a certain model remain unclear. 
This study attempts to uncover the underlying reasons and guide future research to tackle the challenges. It starts 
by clarifying a finer categorization of past studies with respect to both modeling methods and modeling purposes. 
An extended Level of Detail (LoD) framework is proposed to quantify the data usage in each study. Accordingly, 
meta-analyses are conducted to compare the data requirements of different modeling categories. The criteria and 
approaches for model performance evaluation are summarized and classified into validation and verification 
methods, followed by a discussion about the relationship between the model and control performance. The 
critical review provides new perspectives on the data requirements and performance evaluation of control- 
oriented models. Ultimately, the paper concludes with five directions for future research to bridge the gaps 
between data requirements, model performance, and control performance.   

1. Introduction 

1.1. MPC and control-oriented models 

Buildings take up 30–40% of global greenhouse gas emission and 
energy consumption [1], among which up to 85% is consumed in the 
operation phase [2]. Building system control is a challenging task 
because of the varying system dynamics and disturbances. At present, 
PID control are mostly used in practice, yielding the unsatisfactory 
performance if not well-tuned and the absence of multi-objective su-
pervisory control [3]. These suggest the great energy-saving potential of 
implementing advanced optimal control schemes. 

Model Predictive Control (MPC) was first applied for industrial 
process control [4] and has been tested in buildings since the 1990s [5, 
6]. It is capable of adapting different system dynamics and disturbances, 
improving the thermal comfort conditions and energy performance 
simultaneously. The benefits are more prominent when the control task 
goes beyond setpoint tracking, such as occupancy-based control [7] or 
Demand Response (DR) applications [8]. However, not many actual 
implementation cases are spotted over the years, which can be 

attributed to the relatively high requirements on modeling, expertise, 
data, hardware, usability, and costs [9,10]. Reducing the modeling 
effort and enhancing the model reliability are still essential problems to 
tackle. 

Fig. 1 displays the typical framework of MPC. Three main processes 
are involved in obtaining the control decision: disturbance forecast, 
control-oriented model, and optimization. While all the three processes 
are essential, the control-oriented model has been acknowledged as the 
cornerstone of MPC [11,12]. Disturbance forecast provides the bound-
ary condition for the control-oriented model over the prediction hori-
zon, such as ambient conditions [13], occupant presence [14], and 
energy prices [15]. Under the boundary condition, the control-oriented 
model predicts the building’s thermal response and energy performance 
with different control decisions. Based on the model, optimization is 
applied to identify the optimal control decision. According to the 
modeling purposes and methods, building metadata and/or time series 
training data may be needed for model identification. The optimization 
problem is defined by the objective function and the constraints, which 
are recently categorized in Ref. [16]. Different optimization algorithms 
may be selected depending on the problem formulation and the model 
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derivability [17]. To facilitate the optimization, a desirable model is 
expected to have a simplified structure and high accuracy, requiring less 
calibration and computational cost and maintaining certain physical 
significance [18]. 

1.2. Past reviews and research gaps 

To procure a satisfactory model is one of the main barriers to 
implementing MPC in buildings. As reported in Henze [19], building and 
calibrating the models account for 70% of the total effort. In fact, it is not 
just modeling that is hard, but assessing the difficulty in advance as well 
[11]. Due to the importance and difficulty of this process, extensive 
research has been trying to tackle the challenge. Many review studies in 
the past few years have discussed relevant issues. Fundamentally, the 
modeling methods are usually categorized into physical-based (white--
box), data-driven (black-box) and hybrid (gray-box) models [9,11,20]. 
In addition to that, Li & Wen [12] covered the mechanism of different 
building thermal response models, as well as models of energy storage 
and generation systems. Afram & Janabi-Sharifi [21] summarized the 
specific modeling techniques used in each of the three categories and 
introduced the general process from model creation to evaluation. 
Mirakhorli & Dong [7] outlined the optimization techniques used cor-
responding to different modeling methods. Hilliard et al. [17] catego-
rized the modeling methods by different spatial scales and listed the 
inputs and outputs of representative studies. Atam & Helsen [22] 
reviewed and compared different modeling methods, specifically for 
Ground Source Heat Pumps (GSHP). Afram et al. [23] reviewed the data 
collection and handling issues specifically for the Artificial Neural Net-
works (ANN) models. Rockett & Hathway [24] talked about the effect of 
model update, occupancy uncertainty, and data handling on the model 
and control performance from a practical point of view. Afroz et al. [20] 
defined the physical processes in the physical models of different 
sub-systems, classified the sub-categories of black-box models (also 
covered in Ref. [8]), and elaborated the pros and cons of the three 
fundamental categories. The comparison is conducted with respect to 
prediction accuracy, generalization capability, training data require-
ment, and complexity. Serale et al. [25] separated the white-box models 
into detailed simulation models and reduced-order models, and also 
differentiated the models as building, HVAC systems, and building with 
HVAC systems. Fontenot & Dong [16] specified the main challenges in 
modeling as the high complexity of thermal models, and the un-
certainties in disturbances. Pallonetto et al. [26] also distinguished the 
detailed and simplified white box, and thoroughly discussed the features 
and calibration issues of detailed simulation models. 

There are three major gaps in the existing review studies. First, 
despite the model’s well-known crucial role, a holistic review on model 
performance evaluation and its relationship with the control perfor-
mance is missing. Model performance refers to the authenticity of 
control-oriented models, which is usually evaluated by the prediction 

accuracy. In the meantime, it is also deemed to be necessary that the 
models represent the building dynamics for better extrapolation capa-
bilities [27]. Control performance is reflected in the control results, such 
as energy consumption, thermal comfort, and the like. Model and con-
trol performance were shown closely related [28], but no quantitative 
relationship has been established. 

Besides, the comparison of modeling methods is conducted mainly 
across the three fundamental categories. However, variations exist 
within the same category in terms of, for instance, data usage and pre-
diction performance. For example, while black-box models are generally 
considered to be more accurate, different modeling techniques could 
result in up to 100% difference in prediction accuracy [29]. Also, 
gray-box models are declared to require less building metadata than 
white-box models and less training data than black-box models. Yet, 
depending on different modeling purposes and model fidelity, gray-box 
models can use extensive metadata [30] or training data [31]. 

Moreover, current discussions among different modeling methods 
are conceptual and qualitative. The lack of quantitative investigation 
leaves the modeling challenges unresolved. Hence, this study aims to 
promote the application of MPC in buildings by shedding some light on 
the modeling-related issues, specifically, two research questions:  

• What is the necessary and desirable data to build a satisfactory 
control-oriented model? With the increasing deployment of 
building information modeling (BIM) and building management 
systems (BMS), much more data is being generated over the building 
life cycle, exerting a big challenge on data management and utili-
zation [32]. For MPC, among the numerous potentially useful data, 
what is really needed to build a satisfactory model remains an open 
question. Therefore, a framework to quantify the data usage in 
different studies is needed to enable future studies and improve the 
generalization capability.  

• What is the minimum performance requirement of a control- 
oriented model? Root Mean Square Error (RMSE) is a typical 
metric that quantifies models’ prediction error, which has been 
shown insufficient to inform the control performance [33]. Mean-
while, there are other approaches and metrics for model evaluation. 
On the other hand, only few studies have focused on how the model 
performance would affect the control performance [33,34]. Thus, 
future research towards this direction could benefit from a system-
atic review and a deeper understanding of the model and controller 
performance evaluation. 

1.3. Scope and structure 

This paper gives a critical review on studies related to the control- 
oriented models used for MPC in buildings, mainly from the perspec-
tive of data requirements and performance evaluation. Section 2 pre-
sents a new model categorization regarding modeling purposes and 

Fig. 1. Typical MPC framework, control-oriented model as the cornerstone.  
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modeling methods. Section 3 proposes a novel Level of Detail (LoD) 
framework to quantify the data usage in model identification and con-
ducts meta-analyses about the data requirements of different model 
categories. Then, existing methods and conclusions of model and 
controller performance evaluation are reviewed in section 4. Section 5 
discusses the major findings in this review and future research di-
rections. Finally, the study is concluded in section 6. 

2. Model categorization 

Past studies are first categorized according to the model types to 
facilitate further analysis on data requirements and performance eval-
uation. In addition to the widely-accepted modeling method categori-
zation of white/gray/black-box, another dimension of modeling 
purposes is added to differentiate what the model predicts as load pre-
diction/thermal response/system performance. In this section, repre-
sentative studies are selected in each category to clarify the definitions 
and variations. 

2.1. Modeling methods 

The mechanisms and technical details of different modeling methods 
have been covered in several review papers [12,16,20]. These studies 
classified model types based on the physical/hybrid/data-driven model 
structures. Meanwhile, it is important to note the distinctions regarding 
the data requirements. Table 1 summarizes the extended definitions of 
white/gray/black-box models and their corresponding properties. 

2.1.1. White-box models 
White-box models, also known as physics-based models, are based on 

equations that describe the fundamental heat and mass balance, where 
the parameters are decided by domain knowledge, system specifica-
tions, and actual measurements. In some cases, this category refers to 
those well-established building simulation software that requires sub-
stantial metadata such as Energyplus [35,36]. As opposed to other 
models that are built explicitly for control [37], those models are not 
ideal for forming standard optimization problems. However, with the 
presence of derivative-free optimization methods such as Genetic Al-
gorithm (GA) [38] and Particle Swarm Optimization (PSO) [39], and 
tools like JModelica [40], these programs are also applicable for MPC 
and therefore are considered in this study. 

Still based on building metadata, simplified white-box models are 
developed to be more suitable for optimization. There are three kinds of 
approaches: physical inference, model reduction, and simulation- 
assisted identification. OptiControl is the most famous project using 
physical inference, where a thermal network model was built for an 
office building, and the parameters were decided according to the 
specifications [41]. Due to the nonlinear nature of the resulting model, it 
was linearized at each time step, and Sequential Linear Programming 
was applied for control optimization [13]. This process of model con-
struction and parameter inference is not intuitive, so automation tools 
have been built [42,43]. 

Model reduction is applied to reduce the complexity or the number of 
states of the full-order models so that the computational cost is reduced 
with the expense of accuracy loss. This is a critical step to make the 

optimization problem tractable, especially when it comes to multi-zone 
complex buildings [44]. Typical methods include Linear Approximation 
[45], Balanced Truncation [46], Singular Decomposition [47], and 
Proper Generalized Decomposition [48]. To maintain the physical 
structure in the reduced model, aggregation method [49] and iterative 
trimming [50] were proposed. Considering the trade-off between model 
complexity and accuracy, the minimum model complexity should be 
preserved [34,51]. 

Simulation-assisted identification uses high-fidelity models to 
generate data for simplified model identification [52,53]. It is important 
to note the difference between these simulation-assisted identification 
studies and simulation studies that use a high-fidelity model as a virtual 
testbed to test the proposed gray or black-box model. The difference is 
on the assumption that whether the detailed model is available in real 
applications, in other words, what information is initially used to obtain 
the controller model. In this sense, while the thermal network model 
structure, also known as the resistor-capacitor (RC) or lumped param-
eter model, is more famous as a gray-box approach [54], it should be 
considered a white-box if the parameters are determined by building 
metadata. 

2.1.2. Gray-box models 
Gray-box models are typically based on the thermal network (RC) 

model structure, using time series training data to identify the param-
eters [37]. There is no consensus on the optimal model complexity, i.e. 
the number of R and C used to represent the building. While lower-order 
models may not be able to catch the thermal dynamics, higher-order 
model may reduce the parameter identifiability and lead to overfitting 
problems [33]. Therefore, the model complexity is usually decided on a 
case-by-case basis and varies a lot. For instance, a 4R2C model was used 
to simplify the whole campus [55], yet a 6R2C model was applied to 
represent a single room [56]. Note that the RC models were transformed 
into a State Space Model (SSM) form in many studies [57–59]. 
Compared with the SSM identified by Subspace State Space System 
Identification (4SID) [60], they are still gray-box models as the param-
eters have their physical meaning. 

Algorithms used for parameter identification include Maximum 
Likelihood Estimation (MLE) [10], Least Squares [61,62], Interior Point 
[56], GA [63], PSO [64], Non-Linear Programming (NLP) [65], 
agent-based [66], and MPC Relevant Identification (MRI) [67]. 
Complementarily, properly define the initial guesses and bounds for the 
parameters can improve the identification results [33]. The time series 
data used for identification can be classified into real operation data and 
designed excitation data. Excitation experiments apply designed input 
signals such as Pseudo-Random Binary Sequence (PRBS) [68] and step 
function [69]. Having the opportunity to explore a wider range and 
decompose the coupled thermal effects, the experiments do not guar-
antee the thermal comfort and therefore is costly and intrusive. For real 
operation data, MRI was shown to be able to compensate for the poor 
quality or excitation [27]. 

2.1.3. Black-box models 
The model structures used for black-box modeling are more diver-

sified than the previous two categories, including linear regression [70], 
decision tree regression [71], SSM [72], Autoregressive Exogenous 

Table 1 
Characteristics of the three modeling methods.  

Modeling methods Definitions Properties 

Model structure Data requirements Calibration/identification efforta Optimization cost 

White-box physics/simplified physics building metadata high low - highb 

Gray-box simplified physics metadata & time series data medium low 
Black-box machine learning, statistical, etc. time series data low low - highb  

a Qualitative need of expert knowledge and human interference when calibrating/identifying the models. 
b Depending on model structure. Optimization cost is low when derivative-based is applicable. 
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(ARX) type models [73,74], Support Vector Machine (SVM) [75], Arti-
ficial Neural Networks (ANN) [76], and ensemble models [77,78]. 
Model complexity selection is required for models such as SSM [29], 
ARX [79] and ANN [80]. Similar to the gray-box models, too complex 
model could lead to overfitting [81]. Without the physical implication, 
black-box models generally have worse extensibility (extrapolation 
capability) [82]. Therefore, the training data is expected to cover the 
seasonal variation [20]. 

Though black-box models are claimed to be more suitable for large 
scale systems [52], control-oriented modeling for multi-zone complex 
buildings is still a challenge, regardless of the modeling methods [37]. 
Simply aggregating single-zone models to form a centralized model 
would lead to too many states and an intractable optimization problem 
[64]. On the other hand, decentralized models that neglect the thermal 
interaction between adjacent zones cannot guarantee the performance 
[83]. Thus, distributed MPC was proposed to take advantage of decou-
pled optimization while considering the thermal interaction [84]. 
Meanwhile, depending on the building’s thermal characteristics, no 
significant difference was found between centralized and decentralized 
methods [85], or even a single zone approximation achieved similar 
performance [83]. 

2.2. Modeling purposes 

Even within each of the three kinds of modeling methods, significant 
variations exist in the data requirements and performance evaluation. 
Therefore, the control-oriented models are further categorized by their 
purposes according to the predicted and controlled variables. Essen-
tially, the three modeling purposes are differentiated by the underlying 
assumptions (Table 2). 

2.2.1. Load prediction 
In load prediction models, only the electricity or thermal load during 

the prediction horizon is predicted, assuming that ideal HVAC systems 
track temperature setpoints well. Load prediction models are mainly 
used for Demand Side Management (DSM) applications involving grid 
interaction [86] or thermal storage systems [55]. Cole et al. [87] built an 
Energyplus model and generated training data with perturbation to fit a 
quadratic model for power prediction. Ogunsola et al. [88] applied an 
RC model without the indoor temperature node based on the idealistic 
assumption. Time series models were used more often in this context 
[89,90]. Many grid-interactive studies emphasized the optimization and 
coordination between different sub-systems [26] and neglected the 
uncertainty in load prediction. Perfectly known load profiles with [91] 
or without [92] randomization are used for simulation, or even imitated 
in an experiment using a load bank of resistors [93]. 

2.2.2. Thermal response 
Thermal response models consider the thermal response of buildings 

to incorporate thermal comfort in the optimization problem. The 
assumption of static or ideal HVAC system performance is still held. In 
these studies, the indoor thermal condition is predicted, given certain 
disturbances and control inputs. The trade-off between thermal comfort 
and energy consumption can be dealt with by a) including comfort 
violation in the optimization objectives [78] or b) applying thermal 
comfort constraints [94]. Ma et al. [73] demonstrated significant 
improvement in both energy performance and temperature setpoint 

tracking. West et al. [95] showed less energy consumption while 
maintaining a similar level of Predicted Percentage of Dissatisfied (PPD). 
More conservatively, Chen et al. [77] provided better thermal comfort 
by using more energy than a well-tuned Rule-Based Control (RBC). It is 
worth noting that while load prediction models are solely applicable for 
DSM studies, plenty of thermal response models were also used in DSM 
studies [10,70,96]. When necessary, the thermal comfort can be prior-
itized over fulfilling Demand Response (DR) requests [68]. 

2.2.3. System performance 
In addition to the building thermal response, this category added 

detailed HVAC system performance models, bringing the benefit of 
further optimizing the system operating conditions. For example, Kusiak 
et al. [76] saved around 20% by avoiding unnecessary cooling and 
reheating, Coninck & Helsen [97] improved system performance by first 
using the system with higher efficiency, and Drgoňa et al. [98] achieved 
more than 50% energy saving by recirculating as much as possible hot 
water within the Thermally Activated Building System (TABS). 
Recently, Cupeiro Figueroa et al. [99] demonstrated the extra energy 
saving of having a nonlinear Coefficient of Performance (COP) model 
and a dynamic borefield model, compared with simpler static models. As 
more data and system dynamics are involved in this category, integrated 
modeling methods are sometimes used. In Ref. [69], 4SID was applied to 
identify the zone thermal response model, while semi-physical models 
were built for sub-systems’ performance. By contrast, Coninck & Helsen 
[97] used an RC model for the thermal dynamics of an office and linear 
regression to fit the COP equation. 

2.3. Categorization 

113 studies about MPC in buildings during the past ten years were 
reviewed and categorized by their modeling purposes and methods 
(Table 3). 33 (27.9%) of the studies are actual experiments, which are 
also distinguished from the simulation-based studies in the table and 
Fig. 2. Five papers that used integrated models are assigned to two 
categories and counted twice, resulting in 118 models. Based on the 
categorization results, several observations can be summarized:  

• Regarding modeling methods, white-box models have the largest 
population of 45, followed by gray-box (40) and then black-box (33). 
While the hybrid modeling method is considered promising with 
combined benefits of the other two, it is not adopted more 
frequently. Interestingly, considering only the experimental studies, 
the ranking becomes black-box (14), gray-box (12), and white-box 
(7). Black-box models being more welcome in actual experiments 
may be attributed to the extra domain knowledge requirements of 
the other two. The significantly lower percentage of experiments in 
white-box models affirms this. In general, none of the three methods 
shows the dominance in past studies.  

• Among the three modeling purposes, thermal response accounts for 
the largest number of studies. This is because providing thermal 
comfort to occupants is one main function of the built environment, 
and therefore the thermal response is not negligible when optimizing 
control. On the other hand, HVAC system models are more data- 
intensive and make the optimization problems nonlinear and non- 
convex. Another potential reason is that this review mainly focuses 
on building-level modeling and control. Readers interested in more 

Table 2 
Characteristics of the three modeling purposes.  

Modeling methods Definitions Properties 

Predicted variables Assumptions Data requirements Applications 

Load prediction electricity/thermal load ideal temperature setpoint tracking low demand response, microgrid, etc. 
Thermal response building thermal response static/ideal HVAC system performance medium microgrid, building level control, etc. 
System performance building load & thermal response None high building/system level control  
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details about grid-level or system-level models are referred to these 
two review papers [16,100].  

• The geographical distribution of these studies is displayed in Fig. 3, 
where the color overlays represent the main climate zones [101], 
triangles are simulation studies, and circles are experimental studies. 
Most (83.9%) studies are located in the temperate, especially cool 
temperate zones. Compared with the large population in North 
America and Europe, there might be great potential to exploit in the 
large area with a similar climate in Asia. One desired building 
characteristic for MPC, especially for load shifting applications, is 
higher thermal mass [102]. Therefore, the smaller number of studies 
in the tropical area is possibly due to the relatively lighter envelop. 
However, performance improvement is still achievable [30], and 
integrating renewable energy may bring better opportunities [103].  

• Regarding the modeling and control scales, the proportions of the 
number of controlled zones are displayed in pie charts (Fig. 4). In 
total, 34.7% (41) studies are demonstrated in single zones, while 
only 16.9% (20) are full-scale applications. The lack of large-scale 
cases, regardless of simulation/experiment, agrees with Rockett & 
Hathway [24]. However, the ratio of full-scale demonstration in-
creases to 35.5% considering only experiments, whereas 70.8% 
simulation studies used less than five zones. 

3. Data requirements 

Depending on the modeling methods and purposes, as well as 
building systems, different data or information is used to build the 
model. Data availability and resolution are critical for model calibration, 
for either white-box methods [153] or data-driven methods [154]. 
Meanwhile, data management and utilization have become a challenge 
with the increasingly available data over the building life cycles [32, 
155]. Hence, a framework based on extended Level of Detail (LoD) is 
proposed to quantify and categorize data (including building metadata 
and time series data) used for modeling in past studies. 

3.1. Definition of extended Level of detail 

In the context of Building Information Models (BIM), Level of Detail 
(LoD), or Level of Development, defines and illustrates inputs and in-
formation requirements of the different levels for building elements. 
This clear articulation allows model authors to define what their models 
can be relied on for, and allows downstream users to clearly understand 
the usability and the limitations of models they are receiving [156]. The 
original theme of LoD aligns with the need for control-oriented models 
to clarify the required data and to further imply the performances. 
However, as illustrated in the left part of Fig. 5, the original LoD defi-
nition and some extension studies [157,158] all focused on the design 
and construction phases, considering the static characteristics of 

Table 3 
Categorization of 113 papers according to model methods and model purposes.  

Modeling 
purposes 

Modeling methods 

White-box Gray-box Black-box 

Load prediction [53,87,91–93,104] [63,82,88], [55]a [86,89], [90,105]a 

Thermal response ,[13–15,34,38–40,42,44,46,47,49,50,52,96, 
106–116], [94,117–121]a 

,,,,,,,,,,,,,[27,28,30,33,43,56–58,64,65,67,83,85,122–131],  
[10,59,61,62,95,97,132,133]a 

[68–71,77,79,81,84,134–138], [72,74, 
78,80,139–141]a 

System 
performance 

[99,142–146], [98]a [31,147], [66,69]a ,,,,,,[29,76,148–151], [55,73,97,132, 
152] a  

a Demonstrated with actual experiments. 

Fig. 2. Proportion of each category in the reviewed studies.  
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building elements. Becerik-Gerber et al. [159] noted the increasing need 
for identifying non-geometric data requirements to apply BIM for fa-
cility management but overlooked the considerable variation in time 
series data. 

This paper extends the original definition to take in time series sensor 

data used for MPC. The extended LoD inherits the original form of using 
three-digit numbers to describe certain levels, yet endowing every digit 
with an actual interpretation: time validity, measurement granularity, 
and temporal resolution. Fig. 6 displays the definitions and in-
terpretations of each digit. The sankey flows denote possible 

Fig. 3. Geographical distribution of the reviewed simulation and experiment studies. Color overlays reflect three main climate zones.  

Fig. 4. Proportion of the number of controlled zones (n) in the reviewed studies. Full building applications are counted as >35.  
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combinations of the three digits. Meanwhile, the usage frequencies of 
each LoD in the reviewed papers are reflected in the widths of sankey 
flows and the heights of bars. In general, larger LoD implies a higher cost 
of data acquisition. Apart from the sensor and operating costs, data 
storage, exchange, processing, and computing all introduce additional 
costs [160]. 

3.1.1. Time validity 
The first digit represents the time validity of data, i.e., how up-to- 

date the data is. LoD 400 is simply adopted from BIM for building 
metadata as detailed and accurate design information, ready for con-
struction. As an example, Kwak et al. [107] used design drawings to 
build an Energyplus model. Level 5 involves field measurement, 
including as-built metadata [14] and time series data from designed 
experiments [139]. The measurement is typically conducted during 
building commissioning or other non-operating periods to avoid 
intruding on occupants [73]. Since verification of metadata is usually 
carried out, the white-box models are considered using level 5 unless 
explicitly pointed out. Although LOD 400 is rarely mentioned, evolving 
from that improves the compatibility with BIM definition. Level 6 refers 
to historical data collected during real operation, which is commonly 
used for gray-box [33] and black-box [152] model identification. Level 7 
stands for real-time operation data, requiring data exchange modules in 

the system architecture [30]. For clarification, while real-time data is 
normally used when implementing control, level 7 is meant to distin-
guish models that are regularly updated [95,140]. Compared with level 
5, time series data at level 6 and 7 are fully exposed to uncertainties and 
closer to real operation. 

3.1.2. Measurement granularity 
The second digit means the measurement granularity. Again, level 

0 is stuck to the BIM definition for building metadata. For time series 
data, level 1 includes the principal variables that are usually measured 
for building operation, level 3 contains the detailed measurements to 
describe the object more accurately, and level 5 is the advanced mea-
surements taken for specific purposes, subject to customized change. As 
illustrated in Table 4, The four basic levels of LoD refer to different 
specific variables for the six data categories: energy consumption, in-
door condition, internal disturbance, external disturbance, system con-
dition, and envelop condition. The categories are inspired by the one 
proposed by Mahdavi & Taheri [161] and modified to fit the data re-
quirements of control-oriented models.  

• Energy consumption (EN) of the entire building is usually 
measured for billing purpose, which forms level 1. Different energy 
sources, such as electricity and gas, are separated if applicable [74]. 

Fig. 5. The original LoD definition in BIM and the extended definition for time series sensor data.  

Fig. 6. Definition of the extended Level of Detail (LoD). The sankey flows represent the LoD levels appearing in the literature. The widths of Sankey flows and the 
heights of bars reflect the usage frequency of each possible level. 
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For level 3 detailed measurements, the energy consumption is 
splitted into different end use, such as heating [84], cooling [82], 
lighting [14], and plug [107]. As advanced measurements, the en-
ergy consumption is further disaggregated by sub-components, such 
as boilers [97], heat pumps [61], pumps [68], and fans [149].  

• Indoor condition (IC) means indoor thermal comfort conditions in 
most cases and is usually represented by indoor air temperature [33, 
57,58]. For detailed measurements, other factors affecting thermal 
comfort are involved, including mean radiant temperature [117], 
humidity [80], and operative temperature [77]. At level 5, special 
measurements are taken to investigate specific problems. For 
example, occupant thermal comfort feedback is collected for an 
occupant-oriented MPC [144], and illuminance is considered for 
optimal control of blind position [52].  

• Internal disturbances (ID) are the sources of internal heat gain: 
occupants, equipment, and lights. The metadata in this category re-
fers to the assumed operating on/off schedules [55] or ratio based 
profiles [59]. The information can be based on standard or expert 
knowledge. There is no level 1 because they are not necessary for 
normal building operations. As level 3, the profiles are estimated 
based on electricity [97] or temperature [73] trends. CO2 concen-
tration is the most used advanced measuring method [122,132]. 
Passive infrared (PIR) sensors and people counters are also used 
[152]. Internal radiative and convective heat gain are used in many 
simulation studies [33,58], but is hardly measurable in real opera-
tion unless using load emulators [30,76].  

• External disturbances (ED) are the climate conditions that cause 
external heat gain. While the dry-bulb temperature and solar irra-
diance are used much more frequently than other variables like wind 
speed [77] and ground temperature [10], they are not differentiated 
in different levels given their similar availability with the existence 
of weather stations. Level 1 refers to the publicly available weather 
data of the city or the region [74,94]. On-site weather stations are 
used to accurately measure the buildings’ ambient condition [69,97, 
107], therefore defined as level 3. The Typical Meteorological Year 
(TMY) used in most simulation studies [33,58] are also considered 
accurate measurements since the buildings are assumed to be under 
these typical conditions. At level 5, solar heat gain on different 
orientation serves as an example [43,106]. 

• System conditions (SC) describe how the HVAC systems are oper-
ated. Level 0 as static information requires information such as ca-
pacity and COP [39]. Note that sometimes COP is assumed to be 
constant just to estimate energy consumption [65], which is not 
considered to require level 0 SC information. Level 1 is usually 
available in building operation, including the on/off operating mode 
[140] and thermostat setpoints [55]. Detailed measurements cover 
the flow rates and temperatures on the water side [62] and the air 
side [73]. These points are often used to estimate thermal loads when 
the power meters are not in place [30,124]. Valve [81], damper 
[150] and blind [129] positions are also categorized into level 3 as 

they imply the heat flow. As an advanced measurement example, 
supply air static pressure was taken for system performance esti-
mation [76].  

• Envelop condition (EC) only has level 0 static characteristics and 
level 3 detailed measurements. Level 0 may involve geometric 
properties like areas and volumes [30], and/or thermal properties 
like U-value and Solar Heat Gain Coefficient (SHGC) [50]. Infor-
mation like the number of rooms can be easily observed and there-
fore is not explicitly accounted for. For level 3, surface and/or core 
temperatures of the envelops are measured. These variables are 
usually found in buildings with radiant systems such as TABS or 
Concrete Core Activation (CCA). 

3.1.3. Temporal resolution 
Larger numbers as the third digit indicate higher temporal resolution 

of the time series data. Level 0 includes the static building characteristics 
and time series data with the interval larger than an hour. Time interval 
of less than or equal to an hour but larger than 30 min falls into level 1. 
Similarly, less than or equal to 30 min but larger than 15 min belongs to 
level 2, and so forth. Thereby, level n corresponds to 2n− 1 to 2n data 
points per hour. 

3.2. Data requirements of different models 

The data usage of the 118 models is categorized and quantified ac-
cording to the extended LoD framework. The average LoD of the six 
categories is also calculated for each study to enable the quantitative 
comparison between different model types. Since the resulting data is 
unpaired and non-Gaussian distributed, the Mann-Whitney U tests are 
applied. Representative studies are selected for presentation in Tables 
5–7. The selection is done by stratified sampling from each of the nine 
model types. 

3.2.1. Comparing modeling purposes 
It is expected to see the most data used in system performance 

models (Table 7), followed by thermal response models (Table 6), and 
then load prediction models (Table 5). It is obvious that load prediction 
models require the least. While the difference between thermal response 
and system performance models may not be visually detected from Ta-
bles 6 and 7, the Mann-Whitney U test on the average LoD gets 0.016 p- 
value, indicating a significant difference. The medians are 626 for sys-
tem performance models and 528 for thermal response models. The 
general data requirements of the three modeling methods are respec-
tively summarized:  

• With the assumption on indoor condition, load prediction models 
requires no IC data. They predict the total or thermal loads (level 1 or 
3 measurement granularity) based on past values [89,92,93] or the 
disturbances [55,86,88]. Most studies assumed constant room 

Table 4 
Detailed definition of measurement granularity for the 6 data categories.  

Level 0 1 3 5a 

Energy 
consumption 

N/A Total consumption by energy sources Separated consumption by usage 
type 

Separated consumption by sub- 
components 

Indoor condition N/A Indoor air temperature Variables affecting thermal 
comfort 

Thermal comfort/sensation feedback 

System condition System specifications On/off operating mode, thermostat 
setpoints 

Temperature and flow rate 
variables 

Static pressures 

Envelop condition Geometric and thermal properties N/A Surface or core temperature N/A 
Internal 

disturbance 
Assumed operating schedules/ 
profiles 

N/A Estimated operating profile Additional occupant sensors 

External 
disturbance 

N/A Weather data of the city/region On-site weather station/sensors Solar heat gain on different 
orientations  

a Level 5 here is illustrated with typical examples. Actual variables might be subject to customized change in specific studies. 
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temperature setpoints [86,89]. If not, the setpoint is used as a model 
input [55].  

• To model the building’s thermal response, IC and EC data are added 
for model identification. Almost all selected gray and black-box 
thermal response models used room temperature, except some [30, 
95] required both temperature and humidity. Envelop surface [28] 
or core [59] temperatures are sometimes required. Besides, more SC 
data of level 3 measurement granularity is needed as the controlled 

inputs. These points are indispensable if no energy consumption data 
is used.  

• For the system performance models, the most noticeable change is 
the increased use of component-level energy consumption. The 
supply air static pressure is also measured [76,149]. These 
higher-granularity measurements help obtain information about the 
dynamic system performance. It is unforeseen that system perfor-
mance models generally acquire more ID data than thermal response 

Table 5 
Data usage of load prediction models.  

Modeling methods Reference Building type Primary HVAC system Data category 

EN IC ID ED SC EC 

White-box [87] Residential Ideal   500   500 
[92] Residential Ideal 611      
[93] Grid  613      

Gray-box [55] University Chiller 631  500 611 611  
[88] Office Ideal 631  651 631   

Black-box [86] Residential Ideal 613   613   
[89] Grid  611       

Table 6 
Data usage of thermal response models.  

Modeling methods Reference Building type Primary HVAC system Data category 

EN IC ID ED SC EC 

White-boxa [14] Office TABS      500 
[94] Office TABS   500   500 
[96] Residential Heat pump     500 500 
[107] Office VAV   500  500 400 
[111] Grid    500   500 

Gray-box [30] Office FCU  734 754 754 734 500 
[43] University VAV 633 613 653 633 633 400 
[59] Office TABS  612 500 612 632 632 
[61] Residential Hybrid 554 514 554 534 534  
[67] University Radiant  612  632 632  
[83] Residential Radiant 733 713 753 733   
[85] Residential Ideal 631 611  631  500 
[95] Office VAV 734 734 734 734 734  
[125] Office TABS  511 551 551 531 531 
[126] Lab Ideal 534 514  534  534 
[28] Office VAV  612 652 632 632 632 
[131] Lab Hybrid 531 511 551 551  531 
[133] Lab Radiant  612  632 632  

Black-box [71] Residential GSHP 653 613  633 613  
[72] University Radiant  611  631 631  
[77] Office Hybrid 631 511  531 511  
[79] University TABS 653 613 500 613   
[84] Office Ideal 633 613 500    
[135] Office Radiant 735 715  735 735  
[140] Lab VRF  513 633 513 513   

a 13 white-box thermal response models are selected by stratified sampling, where the data usages are mostly similar. Therefore, only 5 are displayed here to be 
concise. 

Table 7 
Data usage of system performance models.  

Modeling methods Reference Building type Primary HVAC system Data category 

EN IC ID ED SC EC 

White-box [98] Office TABS   500  500 500 
[143] Residential Radiant   500  500 500 
[144] Office Hybrid  651   500 500 

Gray-box [31] Office FCU 653 613 653 633 633 633 
[147] Office Radiant  614 634 614 634 634 

Black-box [55] University Chiller 631   611 631  
[73] Lab VAV 553 513 633 513 533  
[76] Lab VAV 631 611 651 631 651  
[149] Office TABS 651 631 651 631 651 631 
[151] Office Radiant 652 612 652 652 632 632  
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models to estimate internal heat gains (p-value 0.047). This could be 
a side benefit of deploying more sophisticated sensing systems. 

3.2.2. Comparing modeling methods 
It can be seen that white-box models mostly use just building met-

adata of LoD 400 and 500. One exception is Zhao et al. [144] embedded 
historical occupant thermal comfort feedback to predict thermal com-
fort. Most gray-box models need information such as the building layout, 
which is not counted as using metadata. Some used metadata to provide 
initial guesses [43] or value bounds [83] for parameter identification. 
The usage of metadata was shown crucial for some identification algo-
rithms, especially in cases like MRI, when the optimization problem is 
non-convex [59]. It is worth noting that metadata, particularly the 
operation profile, was also used in black-box models [79,84]. As another 
example, Li et al. [151] used the system specification to obtain the heat 
pump performance and other temperature measurements to model other 
sub-systems. 

Gray and black-box models use a similar amount of time series data. 
The statistical test gives 0.232 p-value, showing no significant differ-
ence. In fact, gray-box models have slightly higher median average LoD 
(617 over 606). This observation disagrees with the conclusion in 
Ref. [20] that gray-box models require less data. It is still arguable that 
the difference lies in the training data length. The length is not quanti-
fied in this review because many studies did not report. However, 
training data length varying from one day to one year is found in both 
modeling methods. 

3.2.3. Other comparisons 
Although the modeling methods greatly impact the usage of meta-

data, when it comes to time series data, the usage of level 5, 6, and 7 is 
almost evenly distributed in different model types. Faster system dy-
namics requires higher temporal resolution. For example, the average 
resolution level of Fan Coil Unit (FCU) models is 3.75, while the average 
of TABS models is 2.11. To summarize, among the three dimensions of 
LoD, time validity is partially influenced by the modeling methods, 
measurement granularity is affected by the modeling purpose, and 
temporal resolution is typically decided by the system dynamics. 

4. Performance evaluation 

A control-oriented model with acceptable prediction capability is the 
prerequisite to achieve good control. Potential model mismatch could 
lead to control performance degradation. Therefore, it is crucial to 
obtain a structured perception of model performance evaluation and its 
impact on control. With the intention to quantify the relationship, two 
gaps are noticed: a) the absence of a standard or comparable approach 
for model performance evaluation, and b) the paucity of research 
remarking the relationship. This section gives an overview on these two 
issues. 

4.1. Model evaluation 

The approaches to evaluate the credibility of a computerized model 
can be categorized into validation and verification [162]. Validation 
substantiates that a model, within its domain of applicability, possesses 
a satisfactory range of accuracy. Verification substantiates that a model 
represents the conceptual model within specified limits of accuracy. 

4.1.1. Validation metrics 
Most studies evaluate the model through validation. A number of 

them adopted a qualitative approach to plot the model outputs with the 
test data and show a good tracking [62,72,73]. To quantify the error 
over a period, Mean Bias Error (MBE, Equation (1)) is a basic metric. 
However, it is rarely used because positive and negative errors cancel 
each other when summing up and may distort the results. Therefore, 
Mean Absolute Error (MAE, Equation (2)), Mean Squared Error (MSE, 

Equation (3)), and Root Mean Squared Error (RMSE, Equation (4)) are 
normally used [50,86,123]. Concerning about the variation of error, 
Maximum Absolute Error (MaxAE, Equation (5)) and Standard Devia-
tion of Absolute Error (StdAE, Equation (6)) were also used [29,124]. 
These metrics are useful to avoid the potential thermal comfort violation 
caused by the model mismatch [97,139]. There is no consensus on the 
acceptable error, but many studies tried to contain the errors within 
±1∘C. 
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To diminish the effect of absolute value scales when comparing 
different models, the error metrics are normalized to obtain percentages. 
Mean Absolute Percentage Error (MAPE, Equation (7)) and Coefficient 
of Variation (RMSE) (CV(RMSE), Equation (8), also known as Normal-
ized RMSE) are commonly used [76,132]. Replacing the average of the 
measured value in the denominator of equation (8) with the range of 
predicted values yields standardized RMSE [43]. However, comparing 
models with these normalized percentages still requires some caution. 
For instance, consider model A that predicts room temperature around 
26◦C with 1◦C RMSE and model B that gives similar RMSE around 20◦C, 
the lower CV(RMSE) of model A does not make it more accurate. 
Alternatively, R squared (R2, Equation (9), sometimes referred to as the 
goodness of fit), estimating the ratio of explained variance in the pre-
diction, is frequently used as well [77,95]. 
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Usually, closed-loop, or one-step ahead, prediction is validated. As a 
stricter approach, open-loop prediction was validated on occasion to 
examine the model performance over the horizon [44]. For example, 
multi-step RMSE (MS-RMSE, Equation (10)) was applied [27]. In 
equations (1)–(10), ŷ is the model output, y is the test data, y is the 
average of test data, p is the prediction horizon, n is the length of test 
data, i and k refer to the time step. 

MS − RMSE =
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One consideration is the dataset used for validation. The mostly 
applied in practice is the historical data over a period of time. It can be 
obtained either from the real operation or using a high-fidelity simula-
tion model. Otherwise, using real-time data, Finck et al. [90] validated 
the model outputs against measurements during the control experiment. 
Several datasets were designed for the purpose of better examining the 
models’ prediction capability. Kim et al. [130] suggested validating the 
model in a cross-validation manner if significant disturbances present in 
operations. Li et al. [82] tested the extensibility (extrapolating capa-
bility) by designing scenarios when the boundary conditions exceed the 
range of the training dataset. Several studies made datasets with step 
signals to check impulse responses between input-output pairs [27,163]. 
These designed datasets are usually generated using a high-fidelity 
simulation model. It was noted in the field of hydrology that the un-
certainty in measured data should be carefully contained to effectively 
validate the models [164], which was rarely concerned by building 
control studies. 

4.1.2. Verification and identifiability 
It has been recognized that a desired control-oriented model should 

not only predict with small error but also represent the actual building 
systems [27]. In line with this, a desired [58] or minimum [34] model 
complexity is needed by different building systems. Verification can also 
be done by physically interpreting the model outputs or parameters. In 
the frequency domain, model responses to different input stimuli were 
compared. The zone thermal reaction to heat input at different fre-
quencies was examined [34], and “error with respect to input” was 
defined to quantify the performance [163]. Privara et al. [52] examined 
the whiteness of residuals using a cumulative periodogram, confirming 
that the system dynamics was properly modeled, and the residuals were 
caused by noises. For parameter inspection of gray box models, the 
identified RC values were compared with the physical meaning [58, 
125]. Significance index and correlation index were introduced to 
evaluate how the parameters affect the model performance [66]. A 
model is expected to be less sensitive to parameter perturbation [37] and 
have less correlated parameters [66]. 

As a model becomes more complex and has more degree of freedom, 
identifiability comes to be an issue [126,153]. If a model is 
over-parameterized, i.e., has too many parameters to identify, param-
eter estimation, model evaluation, and further application could be 
more difficult [56,165,166]. It has been shown that the parameter 
values can be varied a lot without significantly changing the validation 
results [83,151]. The parameter identifiability can be decomposed into 
structural and output identifiability [123]. To correctly identify the 
models instead of overfitting the training data, an appropriate model 
structure is the most important factor [167]. Therefore, model selection 
methods were applied for both white-box [168], gray-box [43,127] and 
ANN models [80]. Further, Privara et al. [57] applied different model 
selection criteria for probabilistic and deterministic identification 
algorithms. 

4.2. Relating to control performance 

4.2.1. Control performance evaluation 
MPC in buildings aims at energy saving, thermal comfort improve-

ment, peak load reduction, system efficiency improvement, etc. The 
effectiveness can be demonstrated through simulation or experiment. A 
realistic simulation-based demonstration framework requires a control- 
oriented model and a high-fidelity simulation model. The simulation 
model serves as a virtual testbed, to which the control action based on 
the controller model is applied [25]. Tools and desired features of 
simulation models are reviewed in Ref. [169]. Typical tools include 
Building Controls Virtual Test Bed (BCVTB) [170], TRNSYS (type 15,17, 
56,155) [171], and Modelica [172]. However, a number of 
simulation-based studies deployed an idealistic framework by using the 
same model for optimization and simulation. 72.0% (85) of the 

categorized papers are demonstrated by simulation, out of which 41.2% 
(35) are idealized. Assuming that the controller model is perfectly rep-
resenting the building overlooks the influence of the model performance 
on the control performance. Studies using white-box methods, such as 
model reduction, typically tend to be idealized. Yet, without comparing 
to experimental data or higher fidelity models, the effectiveness of 
model reduction methods was claimed to be questionable [44]. 

Unlike simulation-based demonstration, where different control 
strategies can be compared under the same boundary conditions, the 
comparison is not as straightforward in actual experiments. The most 
used approach is normalizing the control results, usually energy con-
sumption, by degree days [62,97] or outdoor temperatures [173]. 
Alternatively, some studies showed that different strategies are applied 
under similar averages [59] or profiles [98] of outdoor temperature. 

Baseline selection is another concern when evaluating the control 
performance. The most convenient way is to compare with the default 
control in the building. However, it was argued that the default settings 
in BMS are possibly poor-tuned, disputing the improvement of control 
performance [24]. It was noted that the saving potential brought by 
MPC could also be achieved by fine-tuning the rule-based controller 
(RBC) [152]. Accordingly, the RBC was pre-tuned to consolidate the 
control comparison [95,106]. Moreover, MPC with simpler configura-
tions were used to show the superiority of robust MPC [123], non-linear 
MPC [117], and system performance MPC [99]. The upper performance 
bound of MPC was quantified by using the perfect model and distur-
bance prediction [13]. Additionally, different combinations of HVAC 
systems and control algorithms were considered as integrated baselines 
[149]. 

4.2.2. Affecting factors 
The performance of MPC varied among different situations from 

worse than baselines to over 100% better. Apart from the model per-
formance, the wide range is also affected by factors including building 
characteristics [102], ambient conditions [94], operation constraints 
[39], disturbances [122], and etc. These factors function in a combined 
and complicated way. For example, the impact of internal disturbance 
was moderated during the heating season, as compared with the cooling 
season [31]. Consequently, extracting the relationship between model 
and control performance involves explicitly designed experiments, 
which is rare in the past years. 

Several studies showed that model mismatch could result in more 
energy consumption [119,132] and/or discomfort [97,139]. To quan-
tify, 10% error led to 5% more energy cost and 100% more comfort 
violation [28]. On the other hand, a more accurate model, in terms of 
RMSE, did not necessarily lead to better control performance [33]. The 
prediction horizon matters as well. Zong et al. [10] found the energy cost 
decreased and then increased as the prediction horizon increased, which 
might be relevant to the open-loop prediction accuracy. Regarding the 
model structure and characteristics, a multi-zone model achieved better 
thermal comfort than a simplified single-zone model with a similar 
amount of energy [83], a certain number of states was found necessary 
to capture the thermal dynamics [34], and a non-convex model caused 
multiple local optima in the optimization, some of which deteriorated 
the control [174]. 

5. Discussion 

Through the categorizations and discussions in the last three sec-
tions, several research gaps are spotted. This section summarizes the 
review with five directions for future study, three of which regarding the 
data requirements and the other two about the performance evaluation. 
These topics interrelate and should be studied together systematically. 
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5.1. What are the minimum data requirements to build a control-oriented 
model? 

The answer to this question is subject to modeling purposes, 
modeling methods, and building systems (section 3.2). While the vari-
ation between different modeling purposes or building systems is clear, 
the border, in terms of data requirements, between modeling methods is 
not. Due to the lack of description, the usage of building metadata is 
mostly referred to as LoD 500. However, LoD 400 can be useful to build 
either white-box [175] or gray-box [43] models. On the other hand, the 
usage of time series data is typically omitted in white-box studies, 
although it is involved in both manual and automated calibration [176]. 
Better describing the data usage would help justify the modeling effort 
and correspondingly the scalability of the proposed methods. Therefore, 
future research would benefit from explicitly quantifying the data 
requirements. 

Another important question to answer is whether extra excitation or 
regular update is necessary for model identification. As shown in Fig. 6, 
LoD 6xx is mostly needed, but both 5xx and 7xx are also used in many 
studies. It was argued that the operation data generated by normal op-
erations led to poor identification, so the data must fulfill specific re-
quirements [163]. There are pretty mature methodologies to generate 
excitation signals [177], but these experiments are usually not 
compatible with normal operations. On the other hand, unoccupied 
experiments are not exposed to the uncertainties brought by occupants 
and other internal disturbances [8]. As a potential solution, the excita-
tion could be partially conducted within the comfort range during daily 
operations [147]. As for LoD 7xx, regularly-updated models are found to 
be desired in several cases [22,56]. The problem is the increased cost for 
data exchange and computation. Also, it is practically impossible to 
provide full excitation and regular update simultaneously. 

The proposed LoD covers the variations in time validity, measure-
ment granularity, and temporal resolution. Besides, there are other 
factors found in the literature. The length of training data is not counted 
in the current framework since no pattern is observed. However, it may 
change the cost of data acquisition, especially for LoD 5xx and 7xx. 
Hence, it will be added as an attribute in the future plan of reforming the 
LoD in an object-oriented way. The spatial resolution of indoor condi-
tions also makes a difference when modeling large scale buildings. 
Reference room temperature [78] and average room temperature [97] 
were used in different studies. These choices are made mainly to reduce 
model complexity. Considering the room temperature is usually avail-
able with the thermostats, the spatial resolution is not specified in the 
framework. The data quality or sensor accuracy is another factor that 
might affect the modeling procedure. Yet, it is hard to estimate and 
rarely declared. Thus, unbiased measurements are assumed. 

5.2. How to balance the trade-off between model complexity and data 
requirements? 

When building a control-oriented model, fewer assumptions and 
better prediction capability are desired [20], calling for more states and 
higher complexity. For example, adding a state for wall temperature 
improved the performance [10]. On the other hand, higher-order 
models require more data to identify [58]. Insufficient training data 
could result in issues of identifiability (section 4.1.2). Inadequately 
informative data could also deteriorate model performance [178]. 
Therefore, it is essential to find a balanced point between model 
complexity and data requirements. The prediction error of a numerical 
model can be generally attributed to aleatoric uncertainty and epistemic 
uncertainty [179]. The epistemic uncertainty can be further decom-
posed into structural and parameter uncertainties, which paves the way 
to balance the trade-off [180]. illustrated an abstracted relationship 
between model uncertainty and complexity for HVAC simulation 
models. Inspired by the idea, the qualitative relationship between model 
complexity, potential prediction error, and data availability is depicted 

in Fig. 7. 
As the model complexity increases, the model describes the physical 

process more precisely, reducing the structural uncertainty (orange 
line). On the contrary, the dark blue dash line represents the parameter 
uncertainty, which increases with the number of parameters in the 
model. With the building metadata and time series data, calibration 
(including calibration for white-box models and parameter identifica-
tion for data-driven models) is conducted to bring down the parameter 
uncertainty. The cyan dash line refers to an idealized situation, where all 
data requirements can be fulfilled, and the parameter uncertainty can be 
mostly removed. The remaining part could be caused by aleatoric un-
certainties. More complex models require more data for calibration and 
benefit more from the calibration. In such an idealized situation, the 
most complex model may be favored. 

In reality, however, building systems are hardly data-rich [181]. The 
limited amount of available data results in the solid blue line in between. 
Given a specific level of data availability, if the model complexity is too 
high or too low, the data would be overfitted or underfitted [33]. 
Consequently, the parameter uncertainty reduced by the calibration, 
marked by the vertical dash lines, will increase and then decrease as the 
complexity increases. Thereby, the balanced point is where the 
improvement brought by the calibration reaches its maximum, high-
lighted in red. This point corresponds to the best performance that can 
be achieved with the data. As more data is available, a more complex 
model could be supported, and the balanced point could be shifted to the 
right, yielding better prediction capability and smaller potential error. 
More research is needed to quantify this relationship. 

Pragmatically, transferability is a barrier to the commercial appli-
cation of MPC in buildings [182]. The configuration effort remains high 
every time when it comes to a new building. With the LoD framework 
and the quantified relationship, the upper bound of model and control 
performance of a building can be estimated based on its data avail-
ability. Along this line, an automated modeling framework could pro-
mote the scalability and potential of MPC. 

5.3. What is the significance or potential benefits of higher measurement 
granularity for the role of occupants? 

Occupant behavior is one of the major uncertainty sources in 
building energy assessment [183]. Therefore, more accurate measure-
ments and estimations are desired. Compared with other data cate-
gories, great variations exist in the advanced measurements of internal 
disturbances. CO2 and PIR sensors were used in past MPC studies [122, 
152]. However, the reliability of both methods was questioned [184, 
185]. Meanwhile, there are other advanced techniques available such as 

Fig. 7. Qualitative relationship between model complexity, potential predic-
tion error, and data availability. 
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WiFi and camera [186]. Regarding the trade-off between measurement 
cost, accuracy, and resolution [187], how to properly estimate the in-
ternal disturbances is to be investigated. 

Apart from generating internal heat gains, occupants also affect 
building operations in an active way [188]. For example, people may 
change the thermostat setpoints or blind positions based on their ther-
mal or visual comfort preference. The occurrence and influence of these 
behaviors are hard to predict. How to interact with occupants and their 
preferences remains an open question for optimal control methods 
[155]. In the existing literature, the indoor conditions are mostly 
measured at lower granularity levels. The consideration and measure-
ments of occupant thermal comfort and sensation are to be integrated 
into MPC [189]. Involving occupants is not just about providing more 
satisfactory indoor conditions but also about reevaluating the 
energy-saving potential in certain situations. Many studies saved energy 
by approaching the upper or lower bound of the acceptable temperature 
range [30,106], which may change if the goal is improving thermal 
comfort instead of minimizing setpoint violation. The effect of inte-
grating occupant thermal comfort on energy saving could be positive 
and negative [190]. 

5.4. How to properly evaluate the performance of a control-oriented 
model? 

It is essential to estimate the prediction capability of a model accu-
rately. Following the idea of parsimonious modeling, the simplest 
“good-enough” model is wanted. While applying model selection 
methods could lead to the simplest, the key is to find the criteria for 
“good-enough”. To identify the right optimal control decision via opti-
mization, the control-oriented models should be able to predict the 
system response given different control actions. Since the range of 
control actions to explore could be broader than normal operation, 
conducting validation over a period of normal operation may underes-
timate the potential error. Misleading prediction further causes degra-
dation in control performance. Hence, a robust and comprehensive 
evaluation approach is needed, where domain knowledge may be 
essentially involved [191]. Validating on a designed dataset and inte-
grating verification are the two possible paths. 

Meanwhile, how a model should be evaluated also affects the data 
requirements. For instance, the additional verification requires building 
metadata and/or time series data at LoD 5xx. In the case of fast-changing 
system dynamics, regularly evaluating a model needs data at LoD 7xx. 
From a practical standpoint, standardized evaluation approaches and 
generalizable metrics are desired, at least for a particular type of 
building and HVAC system. 

5.5. What is the relationship between the model and control performance? 

While better prediction generally leads to better control, the exact 
quantified relationship is to be identified. The minimum requirement on 
the model performance that can guarantee a satisfactory control is 
crucial for the commercial application of MPC. On the other hand, as 
illustrated in Fig. 7, the model mismatch can never be completely 
removed. As the model complexity gets higher, the additional modeling 
efforts and data requirements will increase, but the improvement in 
control performance may become marginal. Being able to quantify the 
cost and benefits would help decide when to stop the effort and go with 
the near-optimal solutions. Methods like offset-free MPC [34] and robust 
adaptive MPC [129] can contain a low level of prediction error. 

Due to the various factors involved in the MPC framework, the 
relationship can only be studied through carefully designed experi-
ments. A testing framework is needed to anchor other influential factors 
and evaluate the model and control performance in a standardized way. 
A robust and unified comparison framework for different configurations 
is also the path of moving MPC from research to industry [192]. 
BOPTEST is a newly-developed platform that could be useful [193]. 

Besides, to ensure the control performance in practice, more real-world 
longer-term demonstrations are needed beyond Prove-of-Concept [3]. 
While existing research mainly focused on heating and cooling domi-
nated periods, more attention should be paid on the transition season. 

6. Conclusion 

This paper addresses two critical issues relating to the control- 
oriented models for MPC in buildings: what data is required, and how 
a model should be evaluated. Over a hundred studies in the past ten 
years are reviewed and categorized according to not just the modeling 
methods but the purposes as well. The data usage of each study is 
quantified and compared among the finer categories, using a newly 
proposed extended Level of Detail (LoD) framework. After that, the 
model evaluation criteria and approaches are summarized and thor-
oughly discussed. Based on the critical review, five directions for future 
research are introduced, pinpointing the gaps between data re-
quirements, model performance, and control performance. 

The paper serves both practitioners and researchers. For practi-
tioners who want to apply MPC in their buildings, section 2 and 3 are 
useful to look up what data is needed for their purposes, or vice versa, 
which method to adopt based on their data availability. Section 4 guides 
how to evaluate their model and what to expect with the model. For 
researchers, the advice on data requirements and performance evalua-
tion makes future studies more generalizable. Ultimately, bridging the 
identified gaps is essential to promoting the actual application of MPC in 
buildings. 
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