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Highlights
Impact of Occupant Related Data on Identification and Model Predictive Control for
Buildings
Sicheng Zhan,Yue Lei,Yuan Jin,Da Yan,Adrian Chong

• Over 10% energy saving and acceptable PMV achieved without occupant-related data.
• Occupant-related data is needed only if the internal heat gain has high variability.
• Adequate model with sufficient data yields physically representative identification.
• Better physical representation could lead to larger RMSE but more precise control.
• Sparse data and parsimonious modeling should be pursued in real-world implementation.
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A B S T R A C T
Model predictive control (MPC) has shown potential in improving building performance but
is bottlenecked by the difficulty in constructing control-oriented models. The challenge lies in
evaluating the sufficiency of the model and the data usage beforehand. This paper bridges the
knowledge gaps in the interactions between data requirements, model quality, and control per-
formance by integrating real-world measurements and simulation-based experiments. The data
usage related to occupancy and Internal heat gain (IHG) was studied considering its importance
and the absence of consensus in the literature. Varying occupant-related data sources were tested
as RC model inputs, including none, schedule, electricity consumption, CO2 ppm, and ideal
measurement. Combinations of model inputs and complexities were examined for prediction
and control in an office, a classroom, and multi-zone offices on one floor. The results indicated
that the usefulness of data is jointly affected by three factors: measurement suitability, model
complexity, and modeling purpose. Given the adequate model structure, satisfying prediction
and control performance was achieved in offices with no detailed measurement. Meanwhile,
electricity and CO2 were needed together to capture the IHG influence and realize the good
performance for classrooms. The experiments also uncovered the heterogeneous requirements
on models from traditional prediction tests and the control tasks. Lower prediction error did not
always mean better control. More importantly, we provided the first quantitative demonstration
of the complementary relationship between model adequacy and data informativeness with
respect to different purposes. This study advocates the pioneering idea of sparse data usage and
parsimonious modeling, which promotes the actual application of MPC in buildings by guiding
control-oriented model development.

1. Introduction
Buildings contribute more than a third of global greenhouse gas emissions and energy consumption, playing an

important role in the trending campaign of reducing carbon emission [1]. There is an escalating need to apply optimal
control for better building operating performance. For example, both occupant comfort and energy efficiency can be
improved by integrating advanced sensing technologies and occupant-centric control [2]. Plus, the fast installation of
renewable energy generation calls for more flexible buildings with demand response control [3].
1.1. MPC and control-oriented models

Model predictive control (MPC) is an established optimal control method that has succeeded in many industrial
fields [4]. It determines the optimal control decision at every time step with three main components: disturbance
forecasting, control-oriented modeling, and receding horizon optimization. MPC has been tested in buildings since
the 1990s [5]. Able to incorporate various system dynamics and disturbances, it showed great potential in many
applications, such as improving system performance and integrating renewable energy sources [6, 7].

Despite its potential, there was a limited number of actual applications during the past decades [8]. One major
barrier is the cost of obtaining an adequate control-oriented model, which is the foundation of the entire framework
[9]. Henze [10] reported that creating and calibrating the models account for 70% of the total effort in implementing
MPC in buildings. Past studies have proposed various modeling methods for MPC, such as physics-based (white-box)
models [11], data-driven (black-box) models [12], and hybrid (gray-box) models [13]. Physics-based models are based
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on physical equations and building metadata. They can predict under different operating conditions but have to undergo
a troublesome calibration [14]. Data-driven models, on the contrary, only involve building operation data but could
suffer extensibility issues [15]. Hybrid models combine physics-based and data-driven models, integrating physical
equations, building information, and data-driven parameter estimation [16].

The Resistor-capacitor (RC) model is the typical hybrid model of choice because it shares the advantages of the
other two model types and is suitable for optimization [17]. Unfortunately, it inherits the disadvantages from both
sides as well. First, it requires both building physics knowledge for model creation and time-series operation data
for identification. Zhan and Chong [18] proposed a Level of Detail (LoD) framework to quantify the data usage and
pointed out the lack of consensus on which LoD to use. Besides, while having a simplified physical model structure,
the parameters could be wrongly estimated if the training data does not properly describe the building dynamics. The
poorly identified control-oriented model could jeopardize the prediction and control performance [19]. Lin et al. [20]
suggested conducting excitation experiments for identification instead of using a larger amount of regular operation
data. However, it is practically challenging to realize dedicated experiments and realistic disturbances simultaneously
[21].

In addition to the difficulty in modeling building dynamics, it is even harder to determine how accurate a model
should be and to assess the modeling effort in advance [22]. Bengea et al. [23] showed 5% more energy cost and
100% more comfort violation caused by 10% of model discrepancy. By contrast, RMSE was found to be an insufficient
measure of control performance [24]. Atam and Helsen [16] suggested that control-oriented models should be carefully
examined from multiple aspects, including model structure, parameter values, and predictive performance over the
control horizon. These non-trivial approaches were designed for different situations and require intensive expert
knowledge, making them hard to generalize in practice.
1.2. Sparse data and parsimonious modeling

The challenges of the scalable application of MPC in buildings can be attributed to the knowledge gaps between
data requirements, model quality, and control performance. The first unresolved question is what data should be used
to obtain the control-oriented model. There are various data sources over the building life cycles, such as the metadata
from design and the time-series data from operations, among which many are not as useful for the modeling or control
objectives [25]. Meanwhile, many important variables are typically immeasurable or unavailable in practice, such as
surface temperature and heat flux. This leaves buildings hardly data-rich compared with other advanced control objects
such as industrial process and robots, the status of which are closely monitored. Thus, it is essential to select the data
that provides useful information for model identification. Using insufficient data could reduce a model’s predictive
performance [26]. On the other hand, it is not beneficial to simply use all available data. An excessive amount of data
could not just increase the computational cost, but also dilute the embedded information and cause trouble in further
analysis [19]. Hence, sparse data usage should be pursued when acquiring control-oriented models. The dictionary
definition of sparse is “something small in number or amount and spread out over an area”. In this context, it refers to
the data that has relatively low volume and dimensionality but provides sufficient information to identify the control-
oriented model with good quality.

The information contained in the data of a specific measurement is usually reflected in data length, time resolution,
and distribution. For the dataset of a building, another significant factor is the type of data sources. For example,
occupant behavior and the resulting internal heat gain (IHG) is a major source of uncertainty in building operations
[27]. As the exact IHG cannot be measured, the question towards sparse data usage is what data source is needed to
convey the information. Various data sources for IHG inputs have been used in control-oriented models. Some models
used no input for IHG and expected the model to incorporate the uncertainty [12]. Under the shortage of real-time
measurement, Váňa et al. [28] approximated the IHG with a ratio-based design schedule. As a more informative
choice, the profiles were estimated based on the electricity consumption trend [29]. Among the measurements that
are less available in building operations, CO2 concentration was usually used for control-oriented modeling [30, 31].
As the role of occupants varies across building functions, the required data sources could also differ [32, 33].

Given sufficient data, the next challenge lies in designing the model. Similar to the recently promoted idea of “fit-for-
purpose” modeling [34], the quality of a model should be assessed by its effectiveness in the control optimization, which
involves extrapolation outside of the training data range. Due to the complicated building dynamics and exogenous
disturbances, there is always an inevitable discrepancy between reality and what a model can explain [35]. Considering
that a dataset can only account for part of the variability in building operations, model selection and identification
should account for a trade-off between fitting the data and representing the building. Too complex models could
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lead to misspecification of the parameters [36, 37]. It has long been advocated to parsimoniously construct useful
computational models and to avoid overparameterization when chasing lower errors [38, 39]. For MPC in buildings,
parsimonious control-oriented modeling should aim stronger model capability in lieu of higher accuracy on normal
testing data. The model capability evaluates how well a model can extrapolate in different conditions and support the
control decision.

Sparse data and parsimonious modeling are interrelated and closely tied to the control performance. Therefore the
key to realizing them in practice is linking the model quality and the control performance. Most past studies developed
one model to fulfill the control purposes. There has been a huge variation in model complexity even just within the
category of RC models [40]. However, due to the diversity across buildings, studies catering to specific buildings are
typically not generalizable and cannot be aggregated for comparison. Consequently, well-defined experiments need to
be conducted to better understand the influence of different model configurations. Only a few studies focused on this.
Picard et al. [41] varied the number of states in the model and spotted the minimum amount that guarantees the control
performance. Blum et al. [24] tested several practical factors of model identification and concluded with a couple of
modeling suggestions. Arroyo et al. [42] found that a centralized multi-zone model and a simplified single-zone model
achieved similar prediction and control performance. A comprehensive understanding of the relationship between
model quality and control performance is lacking.
1.3. Research objectives

This paper has three research objectives:
1. Investigate how data inputs affect model identification and the resulting model capability. Identify the sparsest

data required to acquire a reliable control-oriented model.
2. Study alternative data sources for internal heat gain in different building types as one aspect of data requirements.
3. Address the relationship between model quality and control performance, thereby steering parsimonious model

development in actual MPC applications.
A simulation-based approach was integrated with real-world data to fulfill the objectives. RC model structures,

paired with internal heat gain input types, were varied to investigate the interrelationships in three test cases.
The models were extensively tested for extrapolation capability and control performance. In the rest of this paper,
section 2 introduces the simulation framework and the experiment setup. Section 3 and 4 present the results of model
identification and control experiments. Subsequently, section 5 discusses the theory of sparse data and parsimonious
modeling based on observations from the experiment results. Upon concluding this study, we point out directions for
further investigation.

2. Methodology
2.1. Simulation framework

Figure 1 shows the experiment framework, including the end-to-end emulation of implementing Model Predictive
Control (MPC) in buildings. It consists of four main stages: emulator setup, model identification, model evaluation,
and post-analysis. In each experiment, the high-fidelity emulator served as a real building to generate synthetic datasets
while exposed to actual measurements of boundary conditions. The training and testing datasets were split to estimate
the parameters of RC models and evaluate the identification results. Next, the MPC controller based on the identified
RC model determined the control action through optimization, which was applied back to the emulators for control
performance evaluation. Given the complete flexibility in dataset generation and the low cost of repeating experiments
under the same boundary conditions, RC models with different complexities and inputs were comprehensively tested.
Post-analysis was then carried out to establish the relationships between data requirements, model quality, and control
performance.

• Emulator model We designed three test cases for better generalizability. The first test case is BESTEST Case600,
which is a single-zone office case with light-weight construction [43]. The room was conditioned by a fan coil unit
that supplies air at a constant 13◦C. As the baseline control, a PI controller was used to adjust the supply airflow
rate to meet the room temperature setpoint of 24◦C, which generated the synthetic dataset. To represent the large
uncertainties in internal heat gains (IHG) in actual offices, we collected the occupant number and electricity
consumption (plug and lighting) of an office for three months. The measured profiles, instead of standard design
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Figure 1: Structure of the framework that emulate the end-to-end process of implementing MPC.

schedules, were applied to emulate occupant, equipment, and lighting heat gains. The actual meteorological year
(AMY) data in Singapore was utilized for external disturbances.
The second test case is a single-zone classroom case with the same geometry and HVAC system as the first
test case. However, Wi-Fi access point connection number (as a proxy of occupant number) and electricity
consumption (plug and lighting) were collected in an actual classroom and used as input schedules. Figure 2
plots one week of the collected data, from which the larger scale and irregularity of classroom profiles can be
observed. Incorporating actual data from different types of room functions introduced variations in the role of
occupants and their temporal characteristics.

Figure 2: One week of measured data of internal and external disturbances.
The third test case is a multi-zone office on a single floor with five thermal zones (four perimeter zones and one
core zone) that is based on the US Department of Energy medium office prototype building [44]. The internal
gain profiles for each zone on each day were randomly sampled from the measured data of the office. While being
also office-based, the multi-zone test case came with more complex system dynamics, such as the inter-zone heat
transfer and the more complicated HVAC components. This is another critical factor that affects predictive and
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control performance. These emulators were built using the Modelica Buildings Library1 and simulated for three
months using PyFMI2.

• RC model The RC models represent the simplified thermal dynamics of the room with a set of parameters 𝜃
(resistances, capacitances, and heat gain coefficients). More details about the model structures can be found in
the section on experiment design. Synthetic data in a short period was used to estimate the parameters 𝜃 via
Non-Linear Programming (NLP). Equation 1 defines the estimation problem, where 𝑥 is the states, 𝑢 is the
inputs, 𝑑 is the disturbances, 𝑘 is the number of rooms, 𝑡0 and 𝑡1 are the start and end time of training data.
The lower and upper bounds of parameter values (𝜃𝑙𝑏 and 𝜃𝑢𝑏) are based on prior knowledge. Ten days were
randomly picked from the remaining days in the three months to evaluate the identified models. Both training
and testing adopted relatively long prediction horizons without re-initialization to incorporate more information
about the building dynamics. To examine the extrapolation capability of the RC models, Root Mean Squared
Error (RMSE) was calculated against operation data with 22, 24, and 26 ◦C room temperature setpoint. For
the multi-zone case, RMSE was calculated against the average temperature of five zones, as well as the room
temperature of each zone.

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛∫

𝑡1

𝑡0

𝑘
∑

𝑖
(𝑇𝑟𝑜𝑜𝑚,𝑖 − 𝑇𝑟𝑜𝑜𝑚,𝑖)2 (1)

𝑠.𝑡. 𝑇𝑟𝑜𝑜𝑚 = 𝑓 (𝑥, 𝑢, 𝑑, 𝜃)

𝜃𝑙𝑏 ≤ 𝜃 ≤ 𝜃𝑢𝑏

• MPC controller Two control experiments were conducted to comprehensively evaluate the models’ capability.
First, Equation 2 formulates a typical MPC optimization task. The quadratic objective function penalizes the
cooling power and thermal discomfort with weights 𝑞𝑢 and 𝑞𝑡. Cooling power is represented by the control input
𝑚𝑓𝑙𝑜𝑤, and thermal discomfort is quantified by the absolute value of Predicted Mean Vote (PMV) during the
operating hours (7 am to 7 pm). The PMV was calculated assuming the relative humidity of 60% and quietly
seated occupants with the typical summer indoor clothing [45]. The minimization is subject to the nominal
airflow rate and comfort constraints. The prediction and control horizons are half an hour (two time steps), which
is relatively short but enough for the indoor conditions to reach steady state. Longer horizons caused negligible
change on the control actions in preliminary tests. The internal states were estimated using the Unscented Kalman
Filter, and the boundary conditions were assumed to be known to eliminate its impact on the control performance.
The control performance was evaluated on the randomly selected testing days according to the resulting energy
consumption, average PMV, and discomfort hours.

𝐽 = ∫

𝑡0+30𝑚𝑖𝑛

𝑡0

𝑘
∑

𝑖

(

𝑞𝑢(𝑚𝑓𝑙𝑜𝑤,𝑖)2 + 𝑞𝑡(𝑃𝑀𝑉𝑖)2
) (2)

𝑠.𝑡. 0 ≤ 𝑚𝑓𝑙𝑜𝑤,𝑖 ≤ 𝑚𝑓𝑙𝑜𝑤,𝑛𝑜𝑟𝑚

−0.5 ≤ 𝑃𝑀𝑉 ≤ 0.5

Considering the trade-offs between comfort and energy, higher cooling temperature setpoints are often associated
with lower energy consumption and higher discomfort risk. Therefore, these evaluation metrics cannot distinctly
reflect the control performance. Meanwhile, good decision-making in all MPC tasks relies on accurate load
prediction given future disturbances. Accordingly, we defined another control task of tracking the room
temperature setpoint (equation 3), where the only objective is to maintain the room temperature by controlling the
supply airflow rate. This control task was kept simple to eliminate other affecting factors and to study the effect of
model mismatch. The control performance was quantified by average setpoint violations (◦C) and subsequently
evaluated under three temperature setpoints (22, 24, and 26◦C) on randomly-selected days. Both control tasks

1https://simulationresearch.lbl.gov/modelica/
2https://jmodelica.org/pyfmi/
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Table 1
Summarized design of experiments.

Single-zone office Single-zone classroom Multi-zone office
High-fidelity
emulator BESTEST Case600 a floor of DOE medium office

Emulator
inputs

occupant count and electricity
consumption of an office

Wi-Fi count and electricity
consumption of a classroom

randomly sampled office daily
occupant and electricity profiles

Emulator
outputs

room temperature, electricity consumption, CO2
concentration, internal heat gain, supply airflow rate

the single-zone measurements of
each zone

RC model
sturcture

(number of
parameters)

R1C1 (3), R3C2 (7), R5C3 (10)
R3C2 (7), R4C3 (9), R3C2_multi

(15), R4C3_multi (17), R3C2_par
(19), R4C3_par (21)a

RC model
inputs

common inputs: outdoor temperature, global horizontal solar radiation, supply airflow rate
alternative inputs for internal heat gain (No. parameters): none (0), scheduleb(1), electricity

consumption (2), CO2 ppm (2), elec+CO2 (electricity and CO2 ppm, 3), ideal measurement (0)
Training

data three days of normal operation with 24◦C setpoint one day with time-varying
temperature setpointc

a Constructions with the same material were restricted to have proportional 𝑅𝑠 and 𝐶𝑠 in multi-RC models (R3C2_multi, R4C3_multi,
R3C2_par, and R4C3_par) to limit the number of parameters to estimate.
b Standard schedules according to ASHRAE [46] were used for the offices, and the class schedules were queried from the university
administration system for the classroom.
c One of the five zones took turns to increase temperature setpoint by 2◦C, while the other four zones remained 24◦C.

were solved via NLP using the interior point method.

𝐽 = ∫

𝑡0+30𝑚𝑖𝑛

𝑡0

𝑘
∑

𝑖
(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)2 (3)

𝑠.𝑡. 0 ≤ 𝑚𝑓𝑙𝑜𝑤,𝑖 ≤ 𝑚𝑓𝑙𝑜𝑤,𝑐𝑎𝑝

2.2. Design of experiments
Table 1 summarizes the key variables of the experimental design. Variations in the emulator configurations have

been elaborated on in the previous section. The emulators output commonly available measurements, including room
temperature, electricity consumption, CO2 concentration, and supply airflow rate. The exact amount of internal heat
gain, typically immeasurable in practice, was also exported as an ideal situation for comparison.

RC models with increasing complexities were designed respectively for the single-zone and multi-zone cases.
Figure 3 shows the schematic diagrams of all RC model structures, and the resulting total numbers of parameters of
each model are specified in Table 1. Three levels of complexities were tested for the single-zone cases. R1C1 lumped
the entire room into a capacitor 𝐶1 and a resistor 𝑅1 connecting the outdoor temperature node. Cooling power and
internal heat gain were directly delivered to the room temperature node, so was solar heat gain but with a coefficient 𝑎.
R3C2 modeled the wall as a separate capacitor 𝐶𝑤𝑎𝑙𝑙 and two resistors 𝑅𝑤𝑖 and 𝑅𝑤𝑒. Another resistor 𝑅𝑖𝑛𝑓 𝑖𝑙 was added
to model the infiltration. Solar heat gain was then absorbed by the wall and room node with coefficients 𝑎𝑖𝑛𝑡 and 𝑎𝑤𝑎𝑙𝑙.
R5C3 considered the heat transfer through the floor with three extra parameters 𝑅𝑓𝑖, 𝑅𝑓𝑒, and 𝐶𝑓𝑙𝑜𝑜𝑟. Since the floor
was exposed to a constant ground temperature, this configuration was expected to capture separate dynamics different
from the wall.

For the multi-zone case, R1C1 was too simplified to obtain comparable results and therefore excluded. R3C2 and
R4C3 simplified the multi-zone dynamics as one zone and only modeled the average room temperature in response to
the total cooling power. As the multi-zone emulator was not exposed to the ground temperature, R4C3 was used by
removing the floor branch from R5C3. Centralized multi-RC models characterized the heat flow between neighboring
zones. R3C2_multi and R4C3_multi connected five single-zone RC models with a resistor 𝑅𝑝𝑎𝑟 as the partitions
(R1_partition). Further, R3C2_par and R4C3_par modeled the partitions with R2C1_partition (𝑅𝑝𝑖, 𝑅𝑝𝑒, and
𝐶𝑝𝑎𝑟). In total, 6 RC model complexities were compared for the multi-zone case.

Another essential variable in the experiment design is the input data of RC models. All models took outdoor
temperature 𝑇𝑜𝑢𝑡 and global horizontal solar radiation 𝑄𝑠𝑜𝑙𝑎𝑟 as external disturbances. The cooling power 𝑄𝐻𝑉 𝐴𝐶
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Figure 3: Structure of the RC models with the input of disturbances and control actions annotated by arrows.

was estimated with the supply airflow rate 𝑚𝑓𝑙𝑜𝑤. For internal disturbances that model the internal heat gain (IHG),
six data sources were tested: none, schedule, electricity consumption (elec), CO2 ppm (CO2), elec+CO2, and ideal
measurement (ideal). More detailed measurements provide more information about IHG, yet is more costly to acquire
in practice. Schedule referred to the standard schedule of offices [46] and the university administrative class schedule
for the classroom. The load capacity 𝐶𝑎𝑝 was multiplied to model IHG. Elec and CO2 were outputs of the emulator.
The coefficients 𝑎𝑒𝑙𝑒𝑐 and 𝑎𝐶𝑂2, as well as the offset 𝑏, were applied to fit IHG. Elec+CO2 was elec and CO2 combined
together, characterized by the three parameters 𝑎𝑒𝑙𝑒𝑐 , 𝑎𝐶𝑂2, and 𝑏. These IHG-related parameters were also estimated
through model identification. Ideal was the exact IHG measured from the emulators. Different combinations of RC
model complexities and IHG inputs yield 18 alternative RC models for single-zone cases and 36 for the multi-zone
case.

Temporal and operational factors were also considered when generating the training dataset. We conducted
preliminary experiments to investigate how they affect the model identification as suggested in past studies [47, 24]. It
appeared that time intervals smaller than 15 minutes were sufficient to capture the dynamics. Regarding the training
data length, longer periods slightly reduced the error but drastically increased the computation time. Concisely, three
days of training data with 15-minute intervals reached a balance between training error and computation time for
the single-zone cases, whereas one-day data with 15-minute intervals best served the multi-zone case. Regarding
the operation scheme, regular operation with a constant temperature setpoint of 24◦C was sufficient for the single-
zone cases. However, the multi-zone case desired operational data with time-varying setpoints to provide adequate
excitation and represent the inter-zone dynamics. Consequently, these were adopted for training data generation in
further experiments.

3. Single-zone simulation results
3.1. Identification and prediction

Figure 4 visualizes the RMSE results that evaluate the RC models’ prediction accuracy. Each bar chart compares
the RMSE of the 18 alternative RC models for the corresponding test case and operating conditions. The bars under
specific testing conditions represent the average RMSE of the randomly-selected testing days.

It can be seen that RMSE was kept lower than 0.5◦C in most cases for the office, which means these simplified RC
structures were able to track the basic trend of the room dynamics. For the classroom, however, RMSE was overall
larger, and the error of less accurate models frequently exceeded 1◦C. The change of RMSE against different datasets
was similar for the two cases: low for the training dataset, gradually increased as the testing conditions changed from
22◦C to 24◦C and 26◦C. This indicates that the models had some extrapolation capability but were weakened when
the external heat gain and cooling power are smaller.
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Figure 4: RMSE (◦C) of different RC models for the single-zone office and classroom under training and the three testing
conditions (X-axis is the 6 data sources for internal heat gain, Y-axis is the 3 model complexities, and Z-axis is the RMSE;
darker colors and higher bars represent larger RMSE and worse performance).

In terms of comparing RC model structures, more complex models generally achieved lower training error. This is
related to the stronger capability of fitting the data brought by the larger number of parameters. However, while R1C1
resulted in the largest RMSE in all testing cases, R3C2 and R5C3 showed fluctuating testing RMSE of insignificant
difference across the cases. This is because heat flow through the floor was relatively insignificant, and therefore was
harder to capture than heat flow through the walls (ceiling included).

Figure 5 explains this phenomenon by comparing the disaggregated heat flow of the emulator and RC models. On
this testing day, the prediction error of R1C1was mainly caused by the underestimation of cooling load in the afternoon.
According to the second subplot, the order of heat flow intensity from the most to the least significant is wall, floor,
internal heat gain (IHG), and infiltration. Comparing against the emulation data, it appears that neither R3C2 nor R5C3
correctly predicted the disaggregated heat flow. However, both models captured the aggregated heat flow and properly
predicted the room temperature.

Figure 5: Prediction results of R1C1_ideal, R3C2_ideal and R5C3_ideal on a testing day of the single-zone office case.
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Regarding the alternative IHG inputs, the office and classroom had different outcomes. Under the office internal
disturbances, elec, CO2, and elec+CO2 led to comparable RMSE results with ideal, better than none and schedule.
Meanwhile, it is again worth noting that the reduction of RMSE is minor and that all inputs, if not integrated with R1C1,
could contain the error within an acceptable range. In comparison, none, schedule, and CO2 had difficulty fitting the
training data and yielded larger testing RMSE for the classroom case. elec and elec+CO2 achieved similarly good
results as ideal.

Figure 6 plots the predicted internal heat gain of R5C3 models with alternative inputs, which agrees with the RMSE
results. IHG served a more significant role and was harder to predict in the classroom, causing the larger RMSE. Since
the number of occupants had a very high correlation with the plug load in the office, both elec and CO2 followed
the primary trend of IHG. Noticeably, elec missed several peaks created purely by occupants, and CO2 was delayed
and smoothed, serving as a low pass filter. As the occupants and electricity load were less coupled in the classroom,
elec and CO2 provided less accurate IHG prediction. Combining the previous two, elec+CO2 got the highest accuracy
in both cases. Schedule correctly modeled the rise in the daytime and the drop around noon of the office but failed
to catch the minor variations and the baseload. For the classroom, Schedule could not capture the primary trend.
Consequently, the identification underestimated the load capacity 𝐶𝑎𝑝 to eliminate the influence, which also explains
the amplified difference in RMSE.

Figure 6: Predicted internal heat gain of R5C3 models with different inputs for the two single-zone cases on a testing day.

3.2. Control experiment
The first typical MPC objective (Equation 2) balanced thermal comfort and energy consumption, referred to as the

trade-off control task in the rest of this paper. Figure 7 plots one example of the resulting temperature profiles on a
testing day, compared with the room temperature of baseline control (constant 24◦C), the RC model’s expected room
temperature when doing optimization, and the comfort zone. Two benefits of MPC can be observed: 1) pre-cooling the
zone according to the predicted thermal response so that the temperature is within the comfort zone at the beginning of
each day, and 2) reducing cooling load by maintaining a higher temperature without violating the comfort constraint.

Figure 7: Temperature profiles of the trade-off control task with R5C3_schedule on a testing day for the single-zone office
and classroom (𝑇𝑒𝑥𝑝𝑒𝑐𝑡 is the room temperature expected by the RC model in optimization).

The control results were evaluated by the percentage of daily energy consumption compared with baseline control,
the average PMV during operating hours, and the percentage of discomfort operating hours. All evaluation results
are aggregated and visualized in figure 8. Comparing across the subplots first reveals that all R3C2 and R5C3 models
produced mostly identical results, saving 10-15% of energy with the average PMV between 0.15-0.4. The office’s
energy-saving percentage was slightly larger than that of the classroom. On the contrary, R1C1 models caused
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significant variances in the control performance. The risk of discomfort was substantially increased, making the lower
average energy consumption not desirable.

Figure 8: Control performance of the trade-off task for the single-zone office and classroom. Each scatter plot contains all
daily evaluation results of the corresponding model structure and test case. The marker shapes represent the data source
for internal heat gain input. X axis is the percentage of energy consumption compared with baseline control, Y axis is
the average PMV during operating hours, and the color of points represents the percentage of operating hours when the
comfort constraint (𝑃𝑀𝑉 ∈ [−0.5, 0.5]) is violated.

Looking at the marker shapes, most of the R1C1 points with long discomfort hours had none and schedule as the
input. Moreover, although the performance consistency among R3C2 and R5C3 models for the office was not affected
by input types, a few testing days suffered minor discomfort hours with none and schedule in the classroom. The
missing information of internal heat gain caused the error in predicting the room temperature and therefore the comfort
violation. An example is highlighted in red in figure 7. When the cooling load was larger in the afternoon, the MPC
optimizer attempted to balance the increase by pushing the room temperature closer to the upper bound of the thermal
comfort constraint. This was when the requirements on the models’ prediction accuracy became stricter. Coupled with
the increased internal heat gain that was not captured by schedule, the temperature went beyond the comfort zone.

The second objective function (Equation 3) purely examined the control preciseness using alternative RC models,
referred to as the setpoint-tracking control task in the rest of this paper. The violin plots in figure 9 describe the
distribution of daily average setpoint deviations using different models. The main observations in the trade-off control
results hold in this task, such as the large deviations for R1C1 models and the stable performance among alternative
model inputs in the office. Nevertheless, the classroom case had higher means and variances than the office, showing
it was harder to control due to the more significant and variant disturbances. It is also shown that despite having
close means, the variances of R5C3 models were usually smaller than R3C2, indicating better robustness in controlling
the temperature. In addition to the relatively bad performance of none and schedule, CO2 also experienced larger
deviations occasionally.

4. Multi-zone simulation results
4.1. Identification and prediction

The first and second row of figure 10 respectively shows RMSE against the average room temperature (𝑇𝑎𝑣𝑒𝑅𝑀𝑆𝐸)
and the average of RMSE against the temperature of each room (𝑇𝑧𝑜𝑛𝑒𝑅𝑀𝑆𝐸). All models well contained the RMSE
within 0.5◦C with a few exceptions under 22◦C 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 and varying 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡. When the five zones were operated
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Figure 9: Evaluation results of the setpoint-tracking control task for the single-zone office and classroom. Each violin plot
shows the distribution of daily average temperature setpoint deviations of the corresponding RC model configuration, test
case, and control setpoint. Note the 𝑦 axis of R1C1 is an order of magnitude larger than the rest.

at the same temperature setpoint, the room temperature of different zones was essentially the same. Consequently,
𝑇𝑧𝑜𝑛𝑒𝑅𝑀𝑆𝐸 was only slightly higher than 𝑇𝑎𝑣𝑒𝑅𝑀𝑆𝐸. Therefore, the models were further tested with varying
temperature setpoints. In this more stringent test, the single-RC models (R3C2 and R4C3) still achieved 𝑇𝑎𝑣𝑒𝑅𝑀𝑆𝐸
close to the multi-zone RC models, but got significantly larger 𝑇𝑧𝑜𝑛𝑒𝑅𝑀𝑆𝐸.

Figure 10: RMSE (◦C) of different RC models for the multi-zone office under the four testing conditions (𝑇𝑎𝑣𝑒𝑅𝑀𝑆𝐸 is
RMSE calculated against the average room temperature of five zones, and 𝑇𝑧𝑜𝑛𝑒𝑅𝑀𝑆𝐸 is the average of RMSE calculated
against the room temperature of each zone).

Among the multi-RC models, adding a capacitor for either the internal mass (R4C3) or the partitions (par) had no
distinguishable impact on the RMSE results. Except that the most complex models without the occupant-related inputs
(R3C2_par_none and R4C3_par_none) got larger errors than the simpler models. As for the IHG inputs, schedule,
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elec, CO2, and elec+CO2 performed similarly, with the latter two sometimes extrapolated worse. Interestingly, RC
models given the ideal measurement constantly observed the largest RMSE, which is further explored in section 5.3.
4.2. Control experiments

Figure 11 presents the trade-off control results on a testing day by R4C3_ideal, R4C3_multi_ideal, and
R4C3_par_ideal. The benefit of pre-cooling and slightly warmer temperatures were similar to the single-zone cases.
As the only control variable with single-RC models was the total cooling power, the supply air was proportionally
distributed to the five zones according to the floor area. Understandably, the room temperature did not comply when
the cooling load of each zone was subject to other factors. The first subplot of figure 11 serves as an illustration, where
𝑇 _𝑐𝑡𝑟𝑙_𝐸𝑎𝑠𝑡 and 𝑇 _𝑐𝑡𝑟𝑙_𝑊 𝑒𝑠𝑡 went beyond the comfort zone respectively in the morning and afternoon because
of the more intense solar heat gain. By contrast, R4C3_multi_ideal and R4C3_par_ideal supported more stable
temperature control. Besides, the multi-RC models also maintained 𝑇 _𝑐𝑡𝑟𝑙_𝐶𝑜𝑟𝑒 higher than the other zones, knowing
the core zone is more expensive to cool with its larger floor area.

Figure 11: Temperature profiles of the five zones in the trade-off control task with R4C3_ideal, R4C3_multi_ideal, and
R4C3_par_ideal on a testing day (room temperature of all zones were the same as the setpoint 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒).

Figure 12 summarizes the control evaluation results of all alternative models, where Y axis is the average PMV of all
five zones. Unlike the single-zone cases, the multi-zone comfort compliance examination requires all zone temperatures
to fall inside the comfort zone. Considering the aforementioned typical control behavior, it is not surprising to see the
single-RC models frequently suffered a high percentage of discomfort hours. The multi-RC models achieved 10 to
25% energy saving with PMV varying between 0.1 and 0.2. A higher energy saving percentage was achieved with
an even smaller average PMV than the single-zone office and classroom. The R3C2 and R4C3 results are basically the
same, which means separated capacitors for internal mass and air did not improve the control performance. Meanwhile,
adding the partition capacitor caused more diverse control performance and sometimes about 5% more energy saving.
Multi-RC models with all IHG input types satisfied the thermal comfort during the experiments, implying no significant
difference between each other in this control task.

The daily average deviations of each alternative model in the setpoint tracking control were consistent with 22, 24,
and 26◦C 𝑇 _𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 and therefore aggregated by zone in the violin plots in figure 13. The single-RC models were not
included as their much worse performance can be inferred from the previous results. The temperature deviations of the
four perimeter zones were always within 0.5◦C. However, it is conspicuous that the core zone experienced higher means
and variances than the other four. Without the partition capacitor, this setpoint deviation problem remained regardless
of the type of IHG input. In comparison, the core zone deviation was much reduced given the partition capacitor in the
model, together with proper IHG inputs. For those better models, the setpoint deviations of the perimeter zones were
also further depressed. The R4C3 models again showed no improvement from the R3C2 ones, except that schedule
improved the performance of R4C3_par_schedule but not R3C2_par_schedule. Lastly, models with the ideal
input had marginal improvement compared with their peers.

5. Discussion
The experiment results guide control-oriented data curation and model development from three aspects:
• The practical decision of acquiring data points should be made considering their importance in the downstream

control performance. Occupant-related data can be omitted in offices.
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Figure 12: Control performance of the trade-off task for the multi-zone office. X axis is the percentage of energy consumption
compared with baseline control, Y axis is the average PMV of the five zones during operating hours, and the color of
points represent the percentage of hours when the comfort constraint (𝑃𝑀𝑉 ∈ [−0.5, 0.5]) is violated in any of the five
zones.

Figure 13: Multi-zone control results of the setpoint-tracking task. Each violin plot shows the distribution of average
temperature setpoint deviations of one zone across the three testing conditions (22, 24, and 26◦C 𝑇_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡).

• The model adequacy should match the data informativeness to be properly identified for control. Critical
components such as the partitioning capacitors are necessary.

• The effectiveness of identified models is to be carefully examined. Existing evaluation methods are not robust
for multi-zone offices.

5.1. Occupant related data required for MPC
As occupants and electricity usage (equipment and lighting) are the two main sources of internal heat gain (IHG),

their characteristics in the two building functions determine the importance of alternative data sources. As displayed
in figure 2, the occupants’ presence and usage patterns in an office are regular and correlated. Therefore, both elec
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and CO2 achieved desirable performance, and schedule was not as good but reasonably close. For models with
higher degrees of freedom, even none achieved comparable results. This is because the extra RC parameters partially
compensated for the discrepancy in IHG prediction through the optimization-based identification, which explains why
many past studies worked without any IHG input [12, 41, 29].

By contrast, the classroom had more diverse electricity usage patterns and no repetitive daily profiles. Thus, elec
and CO2 needed to be combined to better represent the internal heat gain. Moreover, since classrooms were commonly
used for activities such as after-class discussion that is not included in the schedules, schedule provided limited useful
information, performing as bad as none.

To sum up, more detailed occupant-related measurements led to better performance in most tested cases, with
the amount of improvement liable to the actual IHG characteristics. In practice, the cost, reliability, and accuracy of
data acquisition are of concern when installing sensors [48, 49]. Accordingly, it is crucial to select data sparsely to
provide just sufficient information. Pragmatically, the traditional MPC problems could work in typical offices with
any IHG inputs. Real-time measurements (elec and/or CO2) may improve the accuracy and robustness, especially for
multi-zone buildings. For classrooms or other mixed-use buildings, it is advisable to include both elec and CO2.

In general, the dataset should be informative enough to be used for model identification and downstream
applications. The data informativeness describes the overall amount of information about the building dynamics
embedded in the dataset. As the internal heat gains can only be indirectly measured, the type of data sources is the
main factor that affects the informativeness. Other forms of variations in data informativeness need to be explored in
future research, including but not limited to the spatial and temporal resolution of data [50, 51], and the data generation
schemes [52]. For example, air-based HVAC systems require higher time resolution than radiant systems to catch the
faster thermal response [18], and the sensor placement needs to be carefully adjusted based on the room layouts to
reflect the temperature distribution [53].
5.2. Matching model adequacy with data informativeness

To generalize the results across different case studies, a model’s capability of fulfilling its purpose is jointly affected
by its adequacy and the data informativeness. Compared with model complexity, model adequacy is a relative concept
that assesses to what extent the model structure can represent the physical object. For example, the R3C2 model is
essentially adequate for the single-zone cases. Although the single R4C3 is more complex, it is inadequate for the
multi-zone case due to the absence of the inter-zone dynamics. It is important here to note the difference between
adequacy and the degree of freedom. While the degree of freedom is up to the number of parameters to identify, not
all parameters contribute to the adequacy. For instance, the IHG-related parameters provide extra degrees of freedom
but do not improve the models’ adequacy.

It has been advocated that the model adequacy and data informativeness should be carefully balanced when creating
models [54, 18, 55]. Yet, the existing discussion is mostly based on qualitative analysis and expert experience. The
experiments in this study serve as the first attempt to quantitatively manifest the interrelationship. The experiment
results are aggregated together in figure 14. The X-axis is the average RMSE of each model under all testing conditions,
and the Y-axis is the average setpoint deviation when applying MPC. Both axes are inverted to respectively represent
more accurate prediction and stronger control capability. Each line denotes the performance change trajectory of a
certain model structure, with the marker shapes showing IHG input types.

More informative data usually improves prediction but does not necessarily lead to better control. The R1C1 models
in the single-zone cases have low adequacy that can only capture the dominant dynamics. In this case, detailed IHG
inputs helped describe the dynamics and enhanced the model, improving both prediction and control with strengthened
physical representations. For the two more adequate model structures, feeding better data again got higher prediction
accuracy. However, the control results barely changed, restricted by the portion of building dynamics that the model can
explain. Another related mark is that R3C2 and R5C3 models with sufficiently informative data predicted with slightly
larger error for the classroom due to the more uncertain disturbances. Meanwhile, the control capability, bounded by
the level of adequacy, was about the same as that for the office. Regarding the single-RC models for the multi-zone
office, the RMSE was mildly reduced with proper data, but the temperature deviations in control remained large. This
is because the missing inter-zone dynamics cannot be accounted for by any additional data.

Both adequate model and informative data are needed to represent the building dynamics and achieve good control.
This necessity is more prominent in the multi-zone office case. R3C2_multi and R4C3_multi (yellow lines) are more
adequate than the single-RC models but were properly identified only with sufficient data. The IHG inputs other than
ideal managed to reduce the prediction error but failed to reach better control. As illustrated in figure 15, the RC
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Figure 14: Aggregated experiment results to demonstrate the interrelationship between model adequacy and data
informativeness with respect to prediction and control.

and IHG-related parameters were optimized to achieve lower prediction error, which did not correspond to the actual
building dynamics and caused the problem in control. As for the ideal cases, the heat gain was injected without extra
IHG-related parameters to tune. The model had the same adequacy but fewer degrees of freedom than those with other
inputs. The input data thereby functioned as a form of constraint to the optimization that prevented sacrificing the
dynamics for lower prediction error, resulting in better control.

More adequate model structures also constrained the optimization so that the physical dynamics were preserved in
the identification results. Adding the partition capacitor (red lines) further improved the model adequacy. With this extra
capacitor, the results were desirable given information from IHG inputs such as elec and CO2. The extra degrees of
freedom now improved the prediction without losing the dynamics. Similarly, the more adequate R4C3_par_schedule
got close prediction error but much better control than R3C2_par_schedule.

The big picture understanding of the interaction between data and models in the identification helps guide
model creation in future applications. To begin with, the model must possess the minimum adequacy to capture the
fundamental building dynamics. For example, the partitions are crucial for multi-zone models. Then, the decision
should be made regarding the modeling purpose. If the only goal is low prediction error, more informative data coupled
with higher degrees of freedom is usually desired. Typical practices to avoid overfitting are advisable [20, 52]. Should
the control preciseness or building dynamics representation be of concern, the model adequacy becomes more critical
and should be carefully decided.

For future research, the experiments are to be conducted under more diverse external disturbances other than the
tropical climate of Singapore. Also, RC models were investigated in this study, considering that the model structure
and prediction results are highly interpretable. It is to be proven that the conclusions would hold for other types of
models. Towards the scalable application of MPC, more research is called for to quantitatively define model adequacy
and data informativeness. Well-defined mathematical formulations could save the effort to pinpoint the balanced model
adequacy and data informativeness in actual applications. Related concepts from other fields are to be adapted, such
as the water resources model structural adequacy [56] and the sample entropy for time series data [57].
5.3. Towards control-informed model evaluation

RMSE is not a perfect indicator for the models’ potential control performance, especially when the building
dynamics get complicated. Linking figure 9 back to figure 4, the setpoint deviations in control aligned well with
the RMSE results for the single-zone cases. In the multi-zone office case (figure 10 and 13), on the contrary, it is
evident that the multi-RC models with ideal IHG input had larger RMSE than the others but performed better in
tracking the setpoints. Figure 15 illustrates the reason with prediction and control results of R3C2_par_schedule
and R3C2_par_ideal on a testing day. R3C2_par_schedule predicted the room temperatures closer to the setpoint
(ground truth), yielding smaller RMSE. However, the partition capacitor 𝐶𝑝𝑎𝑟 was significantly underestimated, and
the five room temperatures displayed similar trends. Consequently, the core zone was continuously undercooled when
applying the model for control. Whereas R3C2_par_idealmodeled the heterogeneous dynamics for each room instead
of just fitting the temperature. While resulting in larger prediction errors, it achieved almost perfect setpoint tracking
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with the frequent state feedback in control. This particular case indicates that the more complicated multi-zone building
dynamics demand stronger extrapolation capability of the models. Noting that absolute RMSE values were all small
(mostly within 0.5◦C), precise control was a more demanding task than achieving low RMSE.

Figure 15: Prediction and setpoint tracking results of R3C2_par_schedule and R3C2_par_ideal on one testing day with
24◦C 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡.

The importance of control-oriented models being able to extrapolate has been widely acknowledged [47, 58]. We
inspected current approaches’ effectiveness in evaluating the models’ extrapolation capability. The first potential path
is to apply excitation signals rather than normal operation when collecting data for training and testing [20]. The dataset
could contain more information about the system dynamics and therefore improve the model. In this study, the test
with varying 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 (figure 10) successfully uncovered the deficiency of single-RC models but gave the same results
regarding the ideal models. It might be arguable that a more aggressive test, such as varying temperature setpoints in
a wider range, is needed. However, those experiments are expensive, if not infeasible, to conduct in practice, and the
current test presented no tendency to yield better results.

Another typical method lies in examining the physical meaning of RC parameters to make sure the models are
physically authentic [36]. Alas, this is a nonstandard and difficult procedure owing to the diversified ways to simplify
the model structure and lump the RC parameters. Taking advantage of the high-fidelity emulator, we compared the
disaggregated heat flow along with the parameter values. Related findings are twofold. Figure 5 demonstrates that RC
models do not have to perfectly represent the building dynamics to obtain a good performance. Conversely, figure 15
reveals that well estimating the capacitors of the multi-RC models improved the control performance in the multi-zone
office. To summarize, it is neither a rigid requirement nor an attainable goal for the RC models to exactly mirror the
entire building dynamics. However, some critical components, such as the partitions in the multi-zone case, have to be
correctly reflected.

Based on the above analysis and past studies, it is premature to define a threshold of prediction error that guarantees
the control performance. Nor is it straightforward to justify the models’ physical correctness. The insufficiency of
existing model evaluation methods has started to draw attention recently [24]. The potential control performance needs
to be informed before implementation to enable the scalable application. Thus, further investigation is needed to save
the excessive experiments that ensure the models can be used for control.

6. Conclusion
This paper aims to address the interrelationships between data requirements, model quality, and control perfor-

mance for MPC in buildings. Simulation-based experiments were conducted using high-fidelity emulation models
integrated with real-world internal disturbances data. Case studies were designed to compare many combinations of
IHG-related data sources and model complexities. The prediction and control performance of alternative models were
tested under varied conditions in a single office, a single classroom, and five-zone offices.
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The experiments first revealed that the importance of data changed across different test cases. Given the adequate
model structure, comparable prediction and control results can be achieved in offices with or without the detailed
measurements for internal heat gain. As the variability and impact of internal heat gain are more significant in
classrooms, electricity consumption and CO2 ppm were needed. More informative data helped model the building
dynamics and resulted in more robust setpoint tracking for the five-zone office, which was not reflected in the RMSE.
This discloses the imperfect match between prediction and control performance, calling for further investigation to
identify more indicative metrics of model capability.

Last but not least, this is the first study that quantitatively articulates the complementary relationship between model
adequacy and data informativeness. Disregarding the modeling purpose, a minimum level of adequacy is indispensable.
Given sufficient data and proper identification, a higher degree of freedom is usually competent in improving prediction
accuracy. More adequate models are desirable if the goal is to accurately represent the building dynamics for robust
control. To advance the actual application of MPC, future research should be devoted to consolidating this theory of
sparse data and parsimonious modeling.
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