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A B S T R A C T
Building energy flexibility is crucial for improving the local consumption of renewable energy
and enhancing building self-sufficiency. The abundant solar energy resource in the tropics
presents a great opportunity to reduce carbon emission and achieve net-zero, but the building en-
ergy flexibility remains understudied in the region. Hence, this study proposed and implemented
a practical control framework based on Model Predictive Control (MPC) that uncovers the
energy flexibility potential of a tropical office building with hybrid cooling systems. Considering
the impact of data availability on the actual control performance, MPC with alternative data
usage configurations were also investigated in actual and virtual end-to-end experiments. It
was first demonstrated that the proposed framework effectively regulated the building load.
Compared with the baseline control, the PV self-consumption and the building self-sufficiency
were respectively improved by 19.5% and 10.6%. Among the three data categories tested (internal
disturbance, external disturbance, and system condition), accurate local weather conditions
were shown to be the most critical for desirable control results. Moreover, the benefit of
higher data granularity under different building characteristics was quantified in the simulation.
Based on the systematic experiments, the relationships between the data availability and control
performance were established. Accordingly, a data-centric framework was proposed to enhance
the reproducibility and scalability of optimal control studies. Future research can be guided to
facilitate large-scale real-world implementations.

1. Introduction
Renewable energy is a promising approach to mitigating climate change and addressing the arising concern of

energy security [1]. Hence, the percentage of global renewable electricity generation has rapidly increased during
the past decade [2], and further growth is expected given the decarbonization goals set by many countries around
the world. While replacing fossil fuels and reducing carbon emissions, renewable energy resources typically observe
significant uncertainty and variability, presenting power balancing and flexibility challenges to the current power grid
[3]. For example, a considerable amount of renewable power that the grid cannot accommodate had to be curtailed [4].
Contributing to more than a third of global energy consumption [5], buildings are critical in tackling these challenges
and therefore the focus of this study.
1.1. Solar photovoltaic self-consumption

Solar Photovoltaics (PV) is a renewable energy resource available at any scale and almost any location, whose
penetration has been promoted by subsidies on its installation [6]. Since most PV installations are currently on-grid,
the generated power does not have to be consumed locally. However, the fast PV penetration resulted in the generation-
load mismatch and corresponding grid operating risks such as the well-known duck curve, where the fluctuating daily
demand curve of the entire threatens the operations of traditional power plants [7]. Such problems could become more
severe as the percentage of PV generation keeps increasing. One approach to addressing this problem is to form smart
microgrids with interconnected loads and distributed PV systems that can operate both on and off the grid [8]. The
self-consumption of PV power has manifold benefits, such as enhancing the grid stability with less fluctuating loads,
reducing consumers’ energy costs through self-sufficiency, and enabling the downsizing of traditional power plants in
the longer term to facilitate renewable energy integration [9].
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The PV self-consumption can be improved by either shifting the generation or shifting the load [10]. Since solar
power is not controllable, the generation can only be shifted through energy storage systems (ESS). Thermal ESS has
been shown effective for both short-term [11], and seasonal [12] shifting. However, the application of thermal ESS
requires compatible HVAC systems and desirable climate conditions [13]. In contrast, electrical ESS such as batteries
have better compatibility and flexibility to shift the generation for several hours with different HVAC systems and
across different climates [14, 15]. Nevertheless, current battery technologies suffer from short lifetimes and high initial
investment [16]. Besides, the available electricity storage capacity is typically dozens of times smaller than the total
renewable power capacity or the peak-valley load difference [17]. Therefore, in addition to ESS, load shifting through
demand-side management (DSM) is critical for integrating renewable energy and reducing carbon emissions.

DSM refers to strategies or techniques to pursue grid-friendly energy consumption behaviors, such as peak clipping
and valley filling [18]. The building sector, as a major consumer, is the main subject of DSM. For example, Aghajani
et al. [19] applied multi-objective optimization to coordinate several energy resources and buildings on a microgrid,
saved 24% of operating costs, and reduced carbon emissions by 16%. Lizana et al. [20] optimized the heat pump and
latent heat storage operational strategies, leading to 20% electricity cost-savings for the end-users and 25% for the
retailers. Zhang and Kummert [21] presented over 20% peak reduction through thermostat control for space heating.
Apart from being a major consumer, another pillar of the buildings’ vital role in DSM is their energy flexibility.
Annex 67 defines the energy flexibility of a building as “the ability to manage its demand and generation according to
local climate conditions, user needs, and energy network requirements" [22]. Noting that DSM and energy flexibility
studies often involve ESS, further discussions in this paper focus on buildings’ intrinsic flexibility resources given the
aforementioned limitations of ESS.
1.2. Energy flexibility of tropical non-residential buildings

Building thermal mass and the usage of electrical appliances are two major intrinsic resources to provide energy
flexibility. As the heat capacity of indoor air is relatively small, the thermal mass of a building mainly comprises
the envelope and the internal mass. Combined with optimal HVAC control strategies, the thermal mass was utilized
to reduce the demand in a short period [23]. Phase change materials can potentially be integrated into envelopes and
furniture to enlarge thermal mass and strengthen energy flexibility [24]. Considering that different zones are not always
occupied and that occupants accept indoor environments within certain comfort ranges, HVAC systems can serve
flexibility through temperature setpoint reset and pre-conditioning. For example, over 40% of demand reduction and up
to 15% of cost-savings were achieved with optimized setpoint schedules [25], and adjusting temperature setpoints could
realize peak-shaving without sacrificing thermal comfort [26]. Besides, a large portion of building energy consumption
is attributed to occupants’ activity of using electrical appliances, especially in residential buildings [27]. Accordingly,
non-essential usage of some appliances can be scheduled to fulfill demand response requests [28].

Although the national solar penetration levels in most tropical countries have yet to surge, solar energy resource is
rich in tropical regions, which provides opportunities for net zero energy buildings (NZEB) in the regions [29]. While
it is not intrusive to on-grid operate a small number of NZEB, the prospect of integrating a larger percentage of solar
energy and NZEB desires the solar generation to be consumed on-site. Yet, little research effort has been devoted to
energy flexibility for non-residential buildings in the tropics thus far [30], possibly because 1) the acceptable range of
room temperature is narrower for cooling, 2) buildings typically have relatively light thermal mass in hot and humid
climates [31], and 3) electrical appliances usage is likely to be essential and unshiftable in non-residential buildings.
Considering that the cooling energy is highly related to the room temperature, one approach to improving the energy
flexibility of tropical office buildings is to expand the acceptable temperature range. Complementing air conditioning
systems with ceiling fans that elevate the air movement, referred to as hybrid cooling in the rest of this paper, provides
thermal comfort with different combinations of room temperature and fan speed [32]. Since the fan speed can be easily
and instantly adjusted, the acceptable temperature range becomes wider than traditional cooling. Taking this advantage,
it is possible to apply advanced control strategies and exploit energy flexibility in tropical buildings.
1.3. Data requirements of realizing energy flexibility

Apart from the building systems, a robust optimal control framework is critical for realizing energy flexibility.
Model predictive control (MPC), as an established control approach, has been shown effective in many studies [33].
Yet, it is still challenging to apply optimal control in actual buildings, and real-world applications remain limited [34].
One primary barrier is the heterogeneity of buildings, making existing methods hardly generalizable. Consequently,
the configuration procedure is consuming and highly expert-driven. Meanwhile, it is not straightforward to inform
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the control performance before implementation, which is necessary for scalable applications. Recent studies have
recognized that data availability and quality are essential for downstream application performance [35, 36]. However,
there is a paucity of research that systematically investigates the significance of different data streams in control
applications.

Building operations have generated a large amount of data in recent years as the rapid deployment of the Internet
of Things (IoT) and data acquisition systems. While fueling the research on many optimization-based applications
such as MPC, these data present great challenges of data management and utilization for scalable implementations in
actual buildings [34]. First, many practical issues are of concern when installing sensors, including cost, reliability,
accuracy, and data management issues [37]. Therefore, acquiring a quality and cost-effective dataset is critical for
applications at scale [38]. Moreover, building operations are subject to substantial uncertainties, which are difficult,
if not impossible, to fully quantify. For example, most occupant behaviors are either immeasurable or unmeasured in
practice, and ambient weather conditions are usually measured at low spatial resolution. Consequently, operational
data is typically sparse in buildings, which affects the reliability of predictive models and control optimization. Thus,
understanding the data requirements is as important as establishing the control methods [39].
1.4. Research objectives

To sum up, building energy flexibility is crucial for facilitating solar energy integration and alleviating grid reliance.
Hybrid cooling systems bring tropical buildings an opportunity to enhance their energy flexibility, but a robust control
method is required to realize the potential. To this end, this study provides an optimal control framework that improves
the energy flexibility of tropical office buildings. There are three research objectives:

1. Propose an integrative control framework based on MPC that realizes the energy flexibility of tropical office
buildings, improving PV self-consumption and building self-sufficiency.

2. Implement the proposed framework in a multi-zone office space and benchmark its performance against baseline
controls in both virtual and actual experiments.

3. Design a series of experiments to investigate the effect of different levels of data availability and establish the
relationships between data usage and control performance.

In the rest of this paper, section 2 describes the proposed control framework, the testbeds, and the design of virtual
and actual experiments. The model and control performance of the basic control framework are presented in section 3,
and the results using alternative data points are compared in section 4. Further, section 5 summarizes the takeaways
from the experiments and discusses the implications for future research about building energy flexibility and data-
centric control.

2. Methodology
2.1. The optimal control framework

Figure 1 displays the implemented control framework that applies model predictive control (MPC) and interacts
with the building through a building management system (BMS) interface. The framework consists of three main
components: disturbance forecast, control-oriented model, and dynamic optimization. Considering the fast thermal
response and small thermal mass of tropical buildings, MPC was configured with 15-minute intervals and 1-hour
horizons. The horizon could be prolonged for buildings with larger thermal mass or energy storage systems.
2.1.1. Disturbance forecast

At each time step during operating hours, the control framework started by forecasting the disturbances for the
coming control horizon, which was then used as boundary conditions for the control optimization. There were four
variables to be forecasted: outdoor temperature, solar irradiance, PV generation, and plug load. Considering that the
horizon of one hour is relatively short, the forecasting was purely based on historical data and time. One-step-ahead
forecasting was applied recursively (i.e. the forecasted value of the current time step serves as an input for the next
time step) four times to form the forecast of one hour.

Long Short-Term Memory (LSTM), a state-of-the-art recurrent neural network for weather forecasting [40], was
adopted here for the outdoor temperature and solar irradiance. Historical data and timestamps during the past two hours
(eight timesteps) were taken as model inputs. For preprocessing, historical values were standardized, and timestamps
were transformed into a cosine signal of a 24-hour period. Two models were trained respectively for temperature and
S. Zhan et al.: Manuscript submitted to ENB Page 3 of 19
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Figure 1: Schematic of the proposed control framework.

irradiance with one year of historical data. Given the high linear correlation between solar irradiance and PV generation,
the PV forecast was obtained by multiplying the irradiance forecast by a constant coefficient obtained via regression.
Lastly, the persistent model was applied for the plug load forecast since it possessed less complicated temporal patterns.
2.1.2. Control-oriented model

Resistor-capacitor (RC) network is a typical type of control-oriented model that simplifies the building thermal
dynamics with a circuit and identifies the RC values through parameter estimation [41]. The complexity of the RC
network varies in different cases, and sub-models in figure 2 were aggregated to model the multi zones in this study.
Each thermal zone was modeled by the R2C2 room, where 𝑅𝑒𝑥𝑡 stood for the external wall, two capacitors 𝐶𝑎𝑖𝑟 and
𝐶𝑖𝑛𝑡 respectively represented indoor air and internal mass (floor and ceiling included), and 𝑅𝑖𝑛𝑡 was the resistance of
convective heat transfer. Model inputs included outdoor temperature 𝑇𝑜𝑢𝑡, internal heat gain 𝑄𝑖𝑛𝑡, cooling heat flow
𝑄𝑐𝑙𝑔 , and solar irradiance 𝐻𝑠𝑜𝑙𝑎𝑟 (heat gain coefficient 𝑎 to be estimated). Note that 𝑄𝑐𝑙𝑔 was approximated using
supply air temperature 𝑇𝑆𝐴 and airflow rate �̇�𝑆𝐴, smaller than the chilled water power 𝑃𝑐𝑙𝑔 measured by BTU meters.
This is because the latent cooling load brought by the fresh air was dealt with at the cooling coil and did not affect the
heat balance of the rooms. The R2C1 partition modeled the internal walls that connect two neighboring zones with
two resistors and one capacitor. Note that the external walls were modeled as one resistor in this study because they
are mostly high-performance glasses with negligible thermal capacitance. The R2C1 model should be used if external
walls have a larger thermal mass.

Figure 2: Components used to form the RC network model.
The RC values and solar heat gain coefficients were identified by minimizing the average Root Mean Squared Error

(RMSE) of the room temperatures. As shown in equation 1, 𝑇𝑅𝑀,𝑖 is the measured temperature of the i-th room, 𝑇𝑅𝑀,𝑖is the room temperature predicted by the RC model (given initial states 𝑥, heat flow 𝑞, and disturbances 𝑑), and the
parameters 𝜃 are subject to the admissible range [𝜃𝑙𝑏, 𝜃𝑢𝑏]. Three days of measured data with a 15-minute interval
was used for the identification. The identification was repeated with alternative levels of data availability. Hence, RC
models used in the comparative experiments have the same model structure but different parameter values. Given the
stable weather conditions in tropical climates, the models were not re-calibrated throughout the experiments.

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛∫

𝑡1

𝑡0

𝑘
∑

𝑖
(𝑇𝑅𝑀,𝑖 − 𝑇𝑅𝑀,𝑖)2𝑑𝑡 (1)
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𝑠.𝑡. 𝑇𝑅𝑀,𝑖 = 𝑓 (𝑥, 𝑞, 𝑑, 𝜃)

𝜃𝑙𝑏 ≤ 𝜃 ≤ 𝜃𝑢𝑏

2.1.3. Dynamic optimization
The goal of MPC was to maximize the local consumption of PV generation and minimize the electricity purchased

from the grid. Assuming that the plug load in an office building is not adjustable, the optimization controlled the cooling
load according to how much electricity PV generates. Correspondingly, the quadratic objective function 2 minimized
the difference between the total building load 𝑃𝑡𝑜𝑡𝑎𝑙 and PV generation 𝑃𝑃𝑉 . The control variables were the supply
airflow rate of each room �̇�𝑆𝐴,𝑖, which were subject to the physical limitations.

While the room temperatures were constrained to vary between 25 and 28◦C, the air movement speed was not
included in the optimization considering its minor impact on energy consumption. Although it is theoretically viable
to adjust the ceiling fan with respect to the room temperature [42], the actual air movement preference varies across
individuals. Considering the high variability of occupants in an open office space, the ceiling fans were left to be
adjusted by occupants based on their personal preferences. Meanwhile, as thermal comfort was maintained by different
combinations of room temperature and ceiling fan speed, too high air movement speed could increase the discomfort
risk of draught (undesirable current of air) [32]. To alleviate this issue, the temperature deviation from 26◦𝐶 (neutral
thermal sensation under the default ceiling fan speed) was also penalized with a small weight 𝑞𝑐 = 0.1. This term
enables the optimizer to pursue higher thermal acceptability when there is a spare degree of freedom.

𝐽 = ∫

𝑡0+60𝑚𝑖𝑛

𝑡0

(

(𝑃𝑃𝑉 − 𝑃𝑡𝑜𝑡𝑎𝑙)2 + 𝑞𝑐
𝑘
∑

𝑖
(𝑇𝑅𝑀,𝑖 − 26)2

)

𝑑𝑡 (2)

𝑠.𝑡. �̇�𝑆𝐴,𝑚𝑖𝑛,𝑖 ≤ �̇�𝑆𝐴,𝑖 ≤ �̇�𝑆𝐴,𝑚𝑎𝑥,𝑖
25 ≤ 𝑇𝑅𝑀,𝑖 ≤ 28

2.1.4. Implementation details
The framework was implemented on a personal desktop that exchanges information with the BMS server through

a REpresentational State Transfer (REST) API. The LSTM models were based on TensorFlow1. The control-oriented
RC models were built using Modelica2 and compiled into Functional Mock-up Units (FMU)3 for simulation. Both
identification and control optimization were defined in Optimica and solved by the interior-point method (IPOPT)
using JModelica4. The entire procedure was completed within seconds at each time step.

Although the direct control actions from the optimization were supply airflow rates, it is risky to overwrite the
actuators in actual experiments. Therefore, the expected room temperatures at the next timestep were sent to BMS
as thermostat setpoints, and the actual airflow rates were still governed by the local Proportional-Integral-Derivative
(PID) loop. For consistency, this procedure was also emulated in the virtual experiments.
2.2. Virtual testbed and actual experiments
2.2.1. Building description

The experiments were conducted at 6-zone office spaces located on level 5 of a newly-built net zero energy building
in Singapore. The building has a large number of PV panels installed on the rooftop that generates electricity of around
the same amount as the building consumes in a year. As displayed in figure 3, the 6-zone spaces consist of four offices
and two conference rooms, conditioned by variable air volume (VAV) systems with two dedicated outdoor air fan coil
units (FCU). Ceiling fans were installed in each room and controlled by occupants as part of the hybrid cooling system.
Table 1 summarizes the information of each room.

During operating hours, the VAV damper positions were modulated by PID loops against the thermostat setpoints.
Separate PID loops adjusted the cooling coil valve position and thereby the supply air temperature between 15 and 18◦C
for each FCU based on the average setpoint of the conditioned zones. Since the optimal control was only applied to part
of the building, the total PV generation was allocated to these spaces based on the percentage of energy consumption

1https://github.com/tensorflow/tensorflow
2https://modelica.org/
3https://fmi-standard.org/
4https://jmodelica.org/
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Figure 3: Room layout and constructions of the experiment spaces.

Table 1
Information of the 6 experiment spaces.

No. Room function Floor area [𝑚2] Seating capacitya FCU Min/max supply airflow rate [𝑚3∕ℎ]b

1 Conference 20 4

FCU1

105/210
2 Office 40 4 150/500
3 Office 20 1 150/210
4 Conference 60 10 240/1150
5c Office 81 10 FCU2 175/850
6c Office 99 10 350/1050

a The actual number of occupants could temporarily exceed the capacity.
b The range of supply airflow rate is based on measured data of each VAV box, different from the specifications.
c Room 5 and 6 are in the same big open space but have different thermostats and VAV boxes, and therefore are considered
as two thermal zones separated by an air wall.

in the past two years. Figure 4 shows an example of daily consumption and generation profiles of these six zones. It
can be seen that PV generation exceeded the total building load around noon and was insufficient in the morning and
afternoon. During the experiments, the proposed MPC framework optimized the setpoints to reduce the amount of
surplus and purchased energy.
2.2.2. Dataset description

The situation of data availability varies across buildings, and a considerable difference exists in terms of the
granularity or resolution of available operational data. Therefore, comparative experiments and scalable applications
require a unified method to describe the data usage. The experiment building is very well-metered and has thousands
of data points, among which only a small portion is valuable for control. Table 2 summarizes the data points utilized in
the MPC framework and investigated in the experiments. The categories were based on a recently proposed extended
Level of Detail (LoD) framework [43].
2.2.3. Virtual testbed

A virtual testbed of the experiment spaces was built to lower the experiment cost and enable the comparison of
different control strategies under the same boundary conditions. The building thermal dynamics were emulated by an
RC model structure similar to the control-oriented model. In addition, PID control loops were replicated and added to
the RC model. In the virtual experiments, this emulator takes the optimized setpoints and the boundary conditions as
inputs, and reports the resulting power and room temperatures.
S. Zhan et al.: Manuscript submitted to ENB Page 6 of 19
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Figure 4: Consumption and generation profiles of the experiment spaces on an example day.

Table 2
Data points involved in the experiments.

Data categorya Point name Symbol Unit Data source

Energy
consumption

chilled water power 𝑃𝑐𝑙𝑔

kW

BTU meters of each FCUb

supply air fan power 𝑃𝑓𝑎𝑛 power meters of each FCU
PV power 𝑃𝑃𝑉 smart meter for the entire buildingc

electric power 𝑃𝑒𝑙𝑒𝑐 power meters for all zones under each FCUd

Indoor
condition

room temperature 𝑇𝑅𝑀
◦C thermostats of each roomCO2 concentration 𝐶𝐶𝑂2

ppm
Internal

disturbance
operating schedule 𝑂𝑝𝑒 on/off building design specifications
occupant number 𝑂𝑐𝑐 indirect estimation guided by site visite

External
disturbance

airport outdoor temperature 𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡
◦C airport weather station (∼20km away)

airport solar irradiance 𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡 𝑊 ∕𝑚2

local outdoor temperature 𝑇𝑙𝑜𝑐𝑎𝑙
◦C rooftop weather stationlocal solar irradiance 𝐻𝑙𝑜𝑐𝑎𝑙 𝑊 ∕𝑚2

System
condition

room temperature setpoint 𝑇𝑅𝑀,𝑆𝑃
◦C thermostats of each room

damper position 𝑘𝑉 𝐴𝑉 % VAV boxes of each room
supply airflow rate �̇�𝑆𝐴 𝑚3∕ℎ airflow meter of each VAV box

supply air temperature 𝑇𝑆𝐴
◦C off coil temperature sensor of each FCU

supply air temperature setpoint 𝑇𝑆𝐴,𝑆𝑃
◦C PID loop of each cooling coil

a The categorization is based on the extended LoD framework proposed in [43]. E.g. internal disturbance includes data points that
can be used to estimate occupancy status or internal heat gain.
b The BTU meters measured the chiller water heat flow with chiller water temperatures and flow rate, which was converted to chiller
plant (chillers and pumps included) electric power with a contract-based COP (Coefficient of Performance) of 5.84.
c PV power was allocated to the experiment spaces based on the percentage of historical energy consumption.
d Lighting, plug load, and ceiling fan power for zones under the same FCU are measured together.
e The real-time occupant number of each zone was approximated based on its 𝑃𝑒𝑙𝑒𝑐 and 𝐶𝐶𝑂2

. Hereafter, the use of 𝑂𝑐𝑐 also involves
these two variables. Linear relationships were assumed with the peak value corresponding to the maximum occupant number of
seating capacity.

To serve as the actual building in the virtual control experiments requires the emulator to accurately predict both
the energy and thermal response of the building. Figure 5 compares the emulator outputs and measured data on three
consecutive days, where well-matched results can be observed. Testing the model against one month of measured data
returned RMSE of 0.65kW for total power (coefficient of variation of 17.60%) and 0.23◦C for the room temperatures.
2.3. Design of experiments
2.3.1. Virtual experiments

The control framework was first tested for a month on the virtual testbed. In the simulation, the emulator was
initialized at 12am of each day and ran for 24 hours given the actual boundary conditions (𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, 𝑃𝑃𝑉 , 𝑃𝑒𝑙𝑒𝑐). The
control framework was called at each time step during the operating hours, and the control actions (𝑇𝑅𝑀,𝑆𝑃 , 𝑇𝑆𝐴,𝑆𝑃 )
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Figure 5: Validation of the predicted total power and room temperatures of the virtual testbed.

Table 3
Control configuration with different levels of data availability.

Case name
Data points involved in the control framework

Disturbance forecast Control-oriented model Dynamic optimization
(input) (initial state/input) (constraint/control action)

MPC_main 𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, 𝑃𝑃𝑉 , 𝑃𝑒𝑙𝑒𝑐 𝑇𝑅𝑀∕𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, �̇�𝑆𝐴, 𝑇𝑆𝐴 𝑂𝑝𝑒∕𝑇𝑅𝑀,𝑆𝑃
MPC_occ 𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, 𝑃𝑃𝑉 , 𝑃𝑒𝑙𝑒𝑐 𝑇𝑅𝑀∕𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙,𝑂𝑐𝑐, �̇�𝑆𝐴, 𝑇𝑆𝐴 𝑂𝑐𝑐∕𝑇𝑅𝑀,𝑆𝑃
MPC_sat 𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, 𝑃𝑃𝑉 , 𝑃𝑒𝑙𝑒𝑐 𝑇𝑅𝑀∕𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, �̇�𝑆𝐴, 𝑇𝑆𝐴 𝑂𝑝𝑒∕𝑇𝑅𝑀,𝑆𝑃 ,𝑇𝑆𝐴,𝑆𝑃

MPC_airport 𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡,𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡,𝑃𝑃𝑉 , 𝑃𝑒𝑙𝑒𝑐 𝑇𝑅𝑀∕𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡,𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡, �̇�𝑆𝐴, 𝑇𝑆𝐴 𝑂𝑝𝑒∕𝑇𝑅𝑀,𝑆𝑃

were applied to advance the simulation. The resulting room temperatures 𝑇𝑅𝑀 and total power 𝑃𝑡𝑜𝑡𝑎𝑙 were recorded
for analysis.

The framework was benchmarked against two baseline control Base_26 and Base_27.5 with constant setpoints
26 and 27.5◦C. These two setpoints were the previous lower and upper limit of thermostats set during building
commissioning. Further, MPC was configured with different levels of data availability as in table 3 for comparison.
MPC_main is the basic setup. MPC_occ, MPC_airport, and MPC_sat introduce variations in data usage of the category
internal disturbance, external disturbance, and system condition.

• MPC_occ The occupant numbers of each zone estimated with 𝑃𝑒𝑙𝑒𝑐 and 𝐶𝐶𝑂2
were used to replace the operating

schedule. When identifying the RC model, 𝑃𝑒𝑙𝑒𝑐 and 𝐶𝐶𝑂2
were used to approximate the internal heat gain

with additional coefficients. In the optimization, an extra dynamic constraint of minimum outdoor airflow rate
�̇�𝑂𝐴,𝑚𝑖𝑛 was applied based on 𝑂𝑐𝑐 and ASHRAE standard [44]. A safety factor of 1.25 was multiplied to avoid
insufficient fresh air.

• MPC_sat In the basic setup, 𝑇𝑅𝑀,𝑆𝑃 was sent to BMS to realize the optimized �̇�𝑆𝐴, and 𝑇𝑆𝐴,𝑆𝑃 was governed
by the average 𝑇𝑅𝑀,𝑆𝑃 of zones under each FCU. In this case, 𝑇𝑆𝐴 was also treated as a control variable in the
optimization and 𝑇𝑆𝐴,𝑆𝑃 was overwritten.

• MPC_airport The local ambient conditions measured by the rooftop weather station were assumed to be
unavailable. Instead, the airport weather data 𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡 and 𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡 were used as a more commonly available
data source. Both disturbance forecast and RC modeling were affected.
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Another benefit of the virtual testbed is the freedom to alter the building characteristics. Given the dedicated outdoor
air systems and the physical restriction of minimum VAV damper positions, the �̇�𝑂𝐴,𝑚𝑖𝑛 could make no impact if
it is smaller than �̇�𝑆𝐴,𝑚𝑖𝑛. Thus, HVAC systems with additional return air ducts and mixing boxes were emulated
to investigate the effect of including 𝑂𝑐𝑐 and �̇�𝑂𝐴,𝑚𝑖𝑛, referred to as MPC_occ_RA. Similarly, considering that the
benefit of having more accurate weather data may be related to how much solar power is generated, the comparison
of MPC_airport was conducted under various levels of solar power capacity. Under the actual NZEB setting, PV
panels were sized to cover 100% of the building’s accumulative consumption. In the virtual experiments, solar power
abundancy levels of 20, 30, 40, 60, and 80% were also tested.
2.3.2. Actual experiments

Although measured data were used as boundary conditions and the emulator outputs have been validated, the
virtual testbed could not fully account for the uncertainties in actual building operation. Besides, the discrepancy
between the control-oriented RC model and the emulator was smaller than that in the actual application. Thus, Despite
the aforementioned advantages of virtual experiments, the simulation results are to be further validated in reality.

The actual experiments lasted seven weeks since February 2022. Since only one control method can be applied
each day, comparing alternative methods under the same boundary conditions is impractical. Although the climate is
generally stable in the tropics, it is still possible to have fluctuating ambient conditions and indoor disturbances over
the course of two months, making it difficult to properly benchmark the control performance. To robustly test the
control methods under various boundary conditions, the six alternatives (Base_26, Base_27.5, MPC_main, MPC_occ,
MPC_airport, and MPC_sat) took turns to be applied in a random order.
2.3.3. Performance evaluation

The energy flexibility was reflected in the consumption of PV generation, quantified by two metrics: self-
consumption (𝑆𝐶 , Equation 3) [45] and self-sufficiency (𝑆𝑆, Equation 4) [10]. In the equations, 𝐸𝑙𝑜𝑐𝑎𝑙𝑙𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑refers to the part of PV generation that is directly consumed on-site (the green area in figure 4), 𝐸𝑃𝑉 is the daily
accumulated PV generation, and 𝐸𝑡𝑜𝑡𝑎𝑙 is daily total energy consumption. Hence, larger 𝑆𝐶 and 𝑆𝑆 are both desired.

𝑆𝐶 =
𝐸𝑙𝑜𝑐𝑎𝑙𝑙𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝐸𝑃𝑉
(3)

𝑆𝑆 =
𝐸𝑙𝑜𝑐𝑎𝑙𝑙𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝐸𝑡𝑜𝑡𝑎𝑙
(4)

Apart from energy performance, the accuracy of disturbance forecast and control-oriented models of alternative
MPC methods were both evaluated by RMSE. Regarding the indoor environment quality, room temperature constraints
could hardly be violated as the PID loops were still taking effect. Thermal comfort was therefore assumed to be
guaranteed in the simulation as the ceiling fans could be adjusted instantly.

During actual experiments, comfort surveys were not regularly distributed because 1) most occupants did not
regularly stay in the spaces; 2) the experiments were designed to be non-intrusive. Instead, QR codes linked to the
survey were provided with a brief notice at the thermostats and entrances of each room. The occupants were informed
that they were able to provide feedback within a few clicks. Meanwhile, the CO2 concentration and relative humidity
of each room were also monitored.

3. Performance of the control framework
This section demonstrates the effectiveness of the control framework. First, the results of the disturbance forecast

and control-oriented model are validated. The control behavior and performance of the basic MPC_main are then
presented and compared with the baselines. The impact of alternative data availability levels is further investigated
in section 4.
3.1. Accuracy of intermediate results

Figure 6 plots the forecasted disturbances of three consecutive days, where the dashed lines are the one-step-ahead
forecast, and the solid lines are the measured ground truth. All four variables achieved satisfactory accuracy. The
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Table 4
RMSE of the disturbance forecasts during the experiment.

𝑇𝑙𝑜𝑐𝑎𝑙 [◦C] 𝐻𝑙𝑜𝑐𝑎𝑙 [𝑊 ∕𝑚2] 𝑃𝑒𝑙𝑒𝑐,𝐹𝐶𝑈1 [𝑘𝑊 ] 𝑃𝑒𝑙𝑒𝑐,𝐹𝐶𝑈2 [𝑘𝑊 ]
1-step-ahead 0.42 108.91 0.07 0.08
2-step-ahead 0.63 123.80 0.13 0.15
3-step-ahead 0.80 131.67 0.18 0.21
4-step-ahead 0.95 137.01 0.21 0.27

two-to-four-step-ahead forecasts were close to the one-step-ahead with slightly larger errors, therefore not included in
the figure for better legibility. The RMSE of all variables over the experiment period are summarized in table 4. It is
expected to observe the gradually increased RMSE for each variable considering the recursive manner of forecasting,
and even the largest four-step-ahead RMSE are competitive compared with the state of the art [46]. All disturbances
were measured every minute, and the 15-minute averages were used for analysis. Hence, variations within each minute
were not accounted for.

Figure 6: Validation of the disturbance forecast results.

The identified control-oriented models were validated using five days of testing data. The model was initialized
with the room temperatures and run for five days given the inputs (𝑇𝑙𝑜𝑐𝑎𝑙,𝐻𝑙𝑜𝑐𝑎𝑙, �̇�𝑆𝐴, 𝑇𝑆𝐴). This open-loop prediction
test was more demanding than the control optimization and guaranteed that the RC models correctly represented the
building dynamics. Figure 7 plots the predicted results that matched the measured data. The average RMSE throughout
a month was 0.37◦C. The error was slightly larger than the virtual testbed as shown in figure 5 due to the absence of
PID control loops.
3.2. Typical control behavior

Thirty days of virtual experiments showed that the MPC framework successfully realized the energy flexibility
and managed to reduce the discrepancy between 𝑃𝑃𝑉 and 𝑃𝑡𝑜𝑡𝑎𝑙. Figure 8 compares the typical control behaviors of
Base_26, Base_27.5, and MPC_main. The constant setpoints led to relatively stable 𝑃𝑡𝑜𝑡𝑎𝑙 profiles. Consequently,
Base_26 required electricity purchased from the grid when 𝑃𝑃𝑉 was insufficient and left a similar amount over when
𝑃𝑃𝑉 was excessive. Base_27.5 conservatively reduced the amount of purchased energy by pursuing higher room
temperatures, resulting in substantial surplus energy throughout the day. Note that 𝑇𝑅𝑀 of some zones (especially for
Base_27.5) often went below the setpoint because of the lower limit of supply airflow rate.

In contrast, both purchased energy (red area) and surplus energy (yellow area) were considerably contracted
by MPC_main. With the dynamic optimization, the six rooms behaved similarly to match 𝑃𝑡𝑜𝑡𝑎𝑙 with 𝑃𝑃𝑉 . Instead
of abruptly approaching the 26 or 27.5◦C setpoints, MPC_main started earlier and gradually decreased the room
temperatures as 𝑃𝑃𝑉 increased in the morning. Afterwards, the rooms continued to be cooled down to consume
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Figure 7: Testing results of the RC model for MPC_main.

Figure 8: Typical control behaviors of MPC_main, compared with Base_26 and Base_27.5.

more PV generation and store some cooling energy in the building’s thermal mass. By the end of the daytime, the
temperatures slowly bounced back as 𝑃𝑃𝑉 started to drop. As a result, 𝑃𝑡𝑜𝑡𝑎𝑙 followed 𝑃𝑃𝑉 most of the time. With the
forecasted disturbances, the predictive control precisely increased and decreased the amount of supple air to match
the PV generation and maintain the preferable room temperature. These typical behaviors were complied with in the
actual experiments. In practice, the remaining mismatch could be caused by 1) the physical limitations, including
the minimum supply airflow rate and maximum cooling capacity, 2) the error of disturbance forecast, and 3) the
discrepancy between the control-oriented model and the actual building.

Figure 9 illustrates these three causes by comparing the simulation and actual experiment results on a day when
𝑃𝑃𝑉 fluctuated. The highlighted surplus and purchased energy in the first subplot were respectively caused by the
maximum cooling capacity and minimum supply airflow rate. In figure 9.b, it is clear that the forecast of 𝐻𝑙𝑜𝑐𝑎𝑙 was
lagged by one time step when the actual measurement suddenly changed. This further led to the error in the PV power
forecast and affected the optimization. It is also worth noting a rare situation where 𝐻𝑙𝑜𝑐𝑎𝑙 once suddenly decreased
around noon while 𝑃𝑃𝑉 was stable. These two factors applied to both the virtual and actual experiments.

Figure 9.c shows the mostly consistent simulated and actual control results on this day and highlights the unmatched
part, which was caused by the model-reality discrepancy. The last plot compares the actual and expected supply airflow
rate of room 5. For example, the control-oriented model underestimated the room temperature and sent a too low
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Figure 9: One day of actual experiment results and the causes of undesirable control behaviors.

setpoint in the early morning, causing the leap in supply airflow rate. In the afternoon, the model underestimated the
temperature again, raised the setpoint too slowly, and decreased �̇�𝑆𝐴,5 with a delay.
3.3. Control performance evaluation

The control performance of each day was evaluated by self-consumption (SC) and self-sufficiency (SS). The daily
total energy consumption was also calculated for reference. The boxplots in figure 10 visualizes the distributions of the
daily evaluation results of Base_26, Base_27.5, and MPC_main in the virtual experiments. The actual experiments
ended up with six days for each control method. The evaluation results of each day were marked by dots in figure 10,
which had no significant difference from the corresponding simulation results (p-values all greater than 0.05).

The control performance on a specific day is highly dependent on the intensity and pattern of solar irradiance.
For example, a larger amount of PV generation usually yields higher SS and lower SC, and fluctuating patterns tend
to deteriorate the optimal control performance. Without a proper normalization method, it is not straightforward to
directly compare the control performance on different days. Therefore, the simulation and experiment results were
combined to form a larger sample size for benchmarking.

Among the two baselines, Base_26 had obviously higher energy consumption and SC percentage than Base_27.5.
Meanwhile, their SS showed no significant difference with a p-value of 0.87 in paired t-test. MPC_main performed
significantly better in both SC and SS (p-values close to zero). Compared with Base_26, SC and SS were respectively
improved by 19.5% and 10.6%. Although the total energy consumption was also higher, a high percentage of energy
was consumed when there was surplus energy, reflected in the higher SS.

The indoor environment was assumed satisfactory in the simulation but closely monitored during the actual
experiments. 𝐶𝑂2 concentration below 800ppm was recommended as the ventilation requirement under the covid
situation [47]. Over the course of two months, 𝐶𝐶𝑂2

of these six rooms never exceeded this threshold, indicating
sufficient ventilation and good indoor air quality. The relative humidity measured for each room was stable and around
60% during operating hours. The air movement speed was inferred from the daily energy consumption of ceiling
fans. It shows that the ceiling fan speed of MPC_main was comparable to Base_26, slightly (around 5%) lower than
Base_27.5.

As for thermal comfort, 𝑇𝑅𝑀 was normally between 25 and 27.5◦𝐶 , within the thermal comfort range given the
elevated air movement speed. However, two complaints were filed in room 5 around noon on days with baseline control
(once with Base_26, another with Base_27.5). This implies the potential discomfort risk around noon. In this case,
the control behavior of lowering the room temperature towards the lower bound (25◦𝐶) when solar irradiance was
intense also had the benefit of guaranteeing thermal comfort.
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Figure 10: Control performance comparison of Base_26, Base_27.5, and MPC_main.

4. Impact of data availability
Figure 11 summarizes the control performance of alternative MPC configurations in virtual and actual experiments.

While MPC_occ and MPC_sat performed almost the same as MPC_main, the two metrics of MPC_airport were both
worsened. In this section, the impact and underlying mechanisms of each data category are investigated.

Figure 11: Control performance comparison of Base_26, Base_27.5, and MPC_main.

4.1. Internal disturbance
The first change under this category was to include the two related data sources 𝑃𝑒𝑙𝑒𝑐 and 𝐶𝐶𝑂2

as RC model inputs.
The resulting model performance was not significantly different from figure 7, yielding an average RMSE of 0.39◦C.
This marginal difference was negligible in the control horizon of one hour. The RC model did not benefit from this
addition because 1) the experiment site is part of an NZEB with relatively low internal load density (occupant, plug,
and lighting), and the model discrepancy mainly lay in the building thermal dynamics; 2) the exact internal heat gain
was unmeasured and highly uncertain, and the data sources could only provide a rough estimation.

The estimated occupant numbers 𝑂𝑐𝑐 were also used to update the outdoor air constraint �̇�𝑂𝐴,𝑚𝑖𝑛 in dynamic
optimization, which turned out to be indistinguishable from MPC_main under the dedicated outdoor air setting.
Figure 12 manifests this influence with the control behaviors of room 5 on a typical day. As �̇�𝑂𝐴,𝑚𝑖𝑛 was constantly
lower than �̇�𝑆𝐴,𝑚𝑖𝑛 and did not affect the control decisions, MPC_occ yielded almost identical results as MPC_main.
A traditional HVAC system with return air MPC_occ_RA was emulated to decouple these two constraints, where �̇�𝑂𝐴could be further lowered by the mixing box damper position when �̇�𝑆𝐴 was restricted. As shown in the middle plot of
figure 12, the �̇�𝑂𝐴 of MPC_occ_RA was slightly lower than the other two methods when 𝑃𝑃𝑉 was low. This reduced the
chilled water consumption, as highlighted by the yellow area in the top plot. Intuitively, less purchased energy improved
self-sufficiency. Meanwhile, the flexibility also brought a greater risk of falsely lowering the self-consumption due to
forecast error. Throughout the virtual experiment, MPC_occ_RA improved SS by 2.8% and decreased SC by 1.2%.
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Figure 12: Typical control behaviors of MPC_main, MPC_occ, and MPC_occ_RA.

4.2. System condition
The control-oriented model of MPC_sat was the same as MPC_main because �̇�𝑆𝐴, and 𝑇𝑆𝐴 were found indispens-

able. For air-based systems, the latent heat removed at the cooling coil does not contribute to the 𝑄𝑐𝑙𝑔 delivered to the
rooms. Thus, the chilled water power 𝑃𝑐𝑙𝑔 was not suitable as RC model inputs, and �̇�𝑆𝐴 was used to estimate 𝑄𝑐𝑙𝑔 .
Theoretically, �̇�𝑆𝐴 can be estimated by the damper position feedback 𝑘𝑉 𝐴𝑉 in the common absence of airflow meters.
However, the actual nominal airflow rate often deviates from the design documentation, and attention should be paid
in practice to acquire the as-built information.

As the primary control objective was to match 𝑃𝑡𝑜𝑡𝑎𝑙 with 𝑃𝑃𝑉 , the resulting energy behavior was driven by the
abundancy of PV generation. Consequently, MPC_main and MPC_sat made no significant difference in the energy
performance. As shown in figure 13, the two 𝑃𝑡𝑜𝑡𝑎𝑙 profiles were very similar. Meanwhile, distinct control actions of
𝑇𝑆𝐴 were taken, and the room temperature of MPC_sat was closer to 26◦𝐶 . With MPC_sat, 𝑇𝑆𝐴 was pushed to the
lower bound 15◦𝐶 to accelerate the cooling and raised to 18◦𝐶 when 𝑇𝑅𝑀 was around or lower than 26◦𝐶 . In contrast,
the 𝑇𝑆𝐴 of MPC_main generally followed the trend of 𝑇𝑅𝑀 to be decreased till late afternoon and then increased. Thus,
while 𝑇𝑅𝑀,𝑆𝑃 was set to adjust �̇�𝑆𝐴 and fulfill the energy flexibility requests, controlling 𝑇𝑆𝐴 separately allows the
optimizer to compensate for the change of �̇�𝑆𝐴 and to pursue independent room temperature setpoints.

Figure 13: Typical control behaviors of MPC_main and MPC_sat.

S. Zhan et al.: Manuscript submitted to ENB Page 14 of 19



Energy Flexibility for Tropical NZEB

4.3. External disturbance
Surprisingly, using 𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡 and 𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡 instead of 𝑇𝑙𝑜𝑐𝑎𝑙 and 𝐻𝑙𝑜𝑐𝑎𝑙 as RC model inputs did not deteriorate the

model accuracy. The parameter values estimated by Equation 1 and the predicted temperature response during the same
period as figure 7 were close to MPC_main, achieving an average RMSE of 0.36◦C. There are two possible reasons.
First, Figure 14 compares the airport and local weather data in a week. Despite the noticeable error (RMSE of 1.33◦C
and 203.5𝑊 ∕𝑚2), the airport data usually followed the trend of local weather, especially for 𝑇𝑜𝑢𝑡. Besides, the building
envelope, well-shaded high-performance glasses, had low thermal conductivity and solar heat gain coefficients, which
effectively diminished the impact of outdoor conditions.

Figure 14: One week of airport and local weather data.
Although 𝑇𝑎𝑖𝑟𝑝𝑜𝑟𝑡 and𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡 caused no problem to the control-oriented model, it is straightforward that the weather

forecast error was significantly enlarged. The RMSE of one-step-ahead forecasts were 1.58◦ for 𝑇𝑜𝑢𝑡 and 201.9𝑊 ∕𝑚2

for 𝐻𝑠𝑜𝑙𝑎𝑟. Unlike the RC model, the dynamic optimization was very sensitive to the forecast of 𝐻𝑠𝑜𝑙𝑎𝑟 and 𝑃𝑃𝑉 . When
𝑃𝑃𝑉 was underestimated, 𝑃𝑡𝑜𝑡𝑎𝑙 would be falsely lowered, which harms self-consumption. Similarly, self-sufficiency
would be interfered with by overestimated 𝑃𝑃𝑉 . As 𝑃𝑡𝑜𝑡𝑎𝑙 was capped by the cooling capacity, the self-sufficiency was
only mildly degraded. Interestingly, 𝐻𝑎𝑖𝑟𝑝𝑜𝑟𝑡 was at an overall lower level than 𝐻𝑙𝑜𝑐𝑎𝑙, resulting in lower total energy
consumption.

Considering that an on-site weather station is expensive and rare, parametric simulation studies were conducted
to evaluate the benefit under various levels of PV capacity. The average SS and SC under different situations are
plotted in figure 15. It is expected that SC increased and SS decreased as the PV capacity was lower, and the gaps
between MPC_main and MPC_airport were also contracted. The mild advantage of MPC_main in SS vanished when
the abundancy level was lower than 50%. As for self-consumption, the need for precise control to improve local
consumption was weakened by low PV generation. The benefit of having on-site weather data disappeared when the
abundancy went below 20%.

Figure 15: Self-consumption and self-sufficiency of MPC_main and MPC_airport under different PV capacity levels.
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5. Discussion
5.1. Energy flexibility of tropical office buildings

The experiment results demonstrate the energy flexibility enabled by the hybrid cooling systems and the MPC
framework. The improvement in self-consumption and self-sufficiency indicates that the building successfully regu-
lated its electricity load to align with the profile of PV generation. The flexibility was realized by continuously adjusting
the cooling setpoints within the thermal comfort range. The occupants found such dynamic indoor environments
satisfactory during the actual experiments, which agreed with the observations made by Liu and Heiselberg [48].
Moreover, many studies have shown that a stable thermal environment with tight temperature control is not preferable
in practice [49].

Although the case study was conducted in a net zero energy building, the benefit was shown to remain at lower PV
abundancy levels. Fundamentally, the MPC framework enables the energy flexibility to adjust building electricity loads
based on predictive boundary conditions. This capability can be utilized in many control scenarios other than improving
PV self-consumption. For example, the objective function of MPC can be defined as the energy cost to incorporate
time-varying energy prices and satisfy demand response requests from the grid. In these scenarios, the electricity loads
are sometimes deliberately increased, which causes higher energy use but reliefs the pressure on grid operations. On
the other hand, self-consumption was improved in this study by simply lowering the temperature setpoint, leading to
unnecessary energy use. To further improve energy performance, it is possible to charge energy storage systems (ESS)
with surplus PV generation for later use.

Another limitation of not involving batteries in the energy systems is that neither SS nor SC could achieve 100%.
It was inevitable to sell or purchase electricity, and the building could not be operated completely off-grid. Further
improvements could be driven by integrating different physical systems. For example, ESS could be involved to shift
the PV generation over a couple of hours or even days with a longer control horizon. It is worth noting the necessity of
an integrative framework to optimize the energy systems from design to operation [50]. Also, day-ahead power forecast
and planning would be desired to fully realize the benefit [51]. Besides, it is possible to get higher SS by switching
buildings to natural ventilation under appropriate conditions [52].
5.2. Towards data-centric optimal control

While the energy flexibility was provided by the building systems and the control framework, the experiments
showed the importance of data in realizing the potential. In other words, the physical systems set the upper limit of the
control performance, and the data availability decides the actual performance in practice. It was also recognized that
additional data points did not always bring better performance. Considering that data could be very expensive, wisely
choosing the data points to collect is crucial for the success of control. Hence, we propose a “data-centric” framework
for real-world MPC projects.

The blue part in figure 16 illustrates the traditional paradigm of “model-centric” MPC. The acquisition of
operational data is usually performed once when commissioning the building, either arbitrarily or just for monitoring.
The data is used for MPC configuration after processing, where most of the development effort is devoted to
constructing a fit model [34]. Many model-centric studies have achieved desirable control performance, which,
however, is subject to the specific building characteristics and data availability of each study. Consequently, these
results can hardly be reproduced, and a high level of customization is required for every new building [33].

In contrast, the data-centric MPC workflow starts with control-oriented data curation that selects which data points
to collect through cost-effectiveness analysis. This procedure is different from feature selection, as one common step
of data processing, that only considers the predictive model accuracy and is usually based on statistical measures.
By control-oriented, the analysis accounts for the integrative impact of data points on the downstream model and
control performance, which are affected by many factors such as the building characteristic and the data usage.
For example, occupant number estimation showed no superiority under dedicated outdoor air systems, and the local
weather data improved PV generation forecast but not RC model accuracy. Hence, making such informed decisions
is not straightforward, calling for a comprehensive understanding of the relationship between data usage and control
performance. Data-centric evaluation is essential to establish such quantitative relationships. Denoted as dashed lines
in figure 16, the evaluation experiments are not part of the workflow in actual applications but experiments to be carried
on beforehand in proof-of-concept studies.

MPC was adopted in this study, but the data-centric framework could incorporate other optimal control methods
such as reinforcement learning. Although the data curation is an additional step upon the original workflow, it has
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Figure 16: Schematic of a data-centric control framework.

manifold benefits for the downstream configurations. An established end-to-end workflow can be reproduced with less
effort devoted to model development and control configuration [39]. The acquisition cost of unnecessary data points
can also be avoided. Thereby, the investment and expected outcome of a control project can be better evaluated, which is
critical for real-world implementations. This study serves as an example of data-centric evaluation, the conclusions of
which are generalizable for tropical office buildings. Future research is required to conduct the data-centric evaluation
for other control scenarios and consolidate the corresponding data-centric workflow.

6. Conclusion
This paper proposed a practical optimal control framework that realizes the energy flexibility of tropical office

buildings and improves the local consumption of PV generation. The proposed framework was implemented and
benchmarked against two baseline controls with constant setpoints in both virtual and actual experiments. Based on
the experiment results, the framework successfully regulated the electricity load to align with the PV generation. The
PV self-consumption and building self-sufficiency were respectively 19.5% and 10.6% higher than the baseline control
of 26◦C setpoint.

Additionally, MPC configured with alternative levels of data availability was compared. The mechanisms of
different data points taking effect were investigated by examining the intermediate and final results of the control
framework. Three categories of data were tested, including internal disturbance, external disturbance, and system
condition. It turned out that weather data had the most significant impact as disturbance forecasting was the most
sensitive to data sources. Furthermore, the impact of data was inspected under varied building characteristics in
simulation to better understand when and why higher granularity or accuracy could be beneficial. For example, the
benefit of a local weather station became marginal as the PV capacity decreased.

According to the experiment results, we proposed shifting the MPC workflow from the traditional model-centric to
data-centric. The new workflow starts with control-oriented data curation, where the desired data points are determined
based on the control purpose and building characteristics. This additional step promotes the scalability of MPC by
acquiring data cost-effectively and saving downstream configuration efforts. Making informed decisions requires
the end-to-end relationships between data availability and control performance, which is established by systematic
experiments as shown in this paper. Therefore, further research is needed to obtain the understanding of other building
types and control scenarios.
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